Genetic Susceptibility to Statin-Induced Myopathy

Georgirene D. Vladutiu, Ph.D.
Departments of Pediatrics, Neurology, and Pathology & Anatomical Sciences
School of Medicine & Biomedical Sciences
University at Buffalo & Kaleida Health Laboratories
Goals of this Session

- To describe the extent of cholesterol-lowering drug use & adverse reactions in the U.S.
- To define severe statin myopathy
- To describe a candidate disease approach to risk assessment
At the conclusion of this presentation, participants should be able to

- Understand the prevalence of severe statin myopathy in the U.S.
- Be aware of the extent of persistent symptoms that may exist post-therapy
- Appreciate the candidate disease approach
- Realize the potential benefits of genetic risk assessment
Short History of the Guthrie Laboratory

1984 - present
The Robert Guthrie Biochemical & Molecular Genetics Laboratory

www.rgbmgl.org

- Performs biochemical & molecular diagnostic testing for inborn errors of metabolism with a primary interest in metabolic muscle diseases
- Approx. 6,000 tests/yr on blood or muscle biopsies; receives ~700 biopsies/yr
The Robert Guthrie Biochemical & Molecular Genetics Laboratory

- Biochemical analysis of muscle includes
 - Mitochondrial myopathies
 - Glycogen storage diseases
 - Lipid storage myopathies
 - Defects in purine metabolism
The Robert Guthrie Biochemical Genetics Laboratory

- Molecular testing for triggerable metabolic myopathies
 - Carnitine palmitoyltransferase (CPT) II deficiency
 - McArdle disease (myophosphorylase deficiency)
 - Myoadenylate deaminase deficiency
 - Exercise Intolerance Mutation Profile
Common Features of Triggerable Myopathies

- Exercise intolerance
- Rhabdomyolysis with myoglobinuria
- Elevated serum CK
- Autosomal recessive inheritance
- Manifesting carriers exist
- Muscle biopsies may be histochemically normal
Some of the Triggers

- Strenuous exercise
- Fasting
- Dehydration
- Extremes in temperature
- Sleep deprivation
- Anesthesia
- Viral infection
- Certain medications (e.g., statins)
Increasing Referral of Statin Myopathy Cases

Muscle biopsies referred to Guthrie Laboratory for analysis between 1998 & 2006
Cholesterol-Lowering Drug Therapy

- More than 102 million Americans have total cholesterol levels >200 mg/dL
 - 41 million with total cholesterol >240 mg/dL
- In 2005, 29.7 million people in U.S. on statin therapy
- By 2010, approximately 39 million taking statins

Medical Expenditure Panel Survey (MEPS); Agency for Healthcare Research & Quality
Statin drug use in the past 30 days

Men

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>45-64 years</td>
<td>3</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>65-74 years</td>
<td>*</td>
<td>26</td>
<td>50</td>
</tr>
<tr>
<td>75 years and over</td>
<td>*</td>
<td>19</td>
<td>45</td>
</tr>
</tbody>
</table>

Women

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>45-64 years</td>
<td>2</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>65-74 years</td>
<td>*5</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>75 years and over</td>
<td>*2</td>
<td>18</td>
<td>39</td>
</tr>
</tbody>
</table>

*Estimates are considered unreliable. Data preceded by an asterisk have a relative standard error (RSE) of 20%-30%. Data not shown have an RSE of greater than 30%.

SOURCE: CDC/NCHS, Health, United States, 2010, Figure 17. Data from the National Health and Nutrition Examination Survey.
Adverse Reactions to Statin Therapy

- 5-7% (1.95 – 2.73 million) develop muscle aches and pains
- 0.2% (78,000) develop severe rhabdomyolysis
 - Defined primarily by serum CK >10XULN (>10 times the upper limit of normal)

Consequences of Adverse Reactions to Statin Therapy

- Risk of statin therapy withdrawal from >2.3 million patients based on myalgias alone
- 30% (690,000) may develop earlier cardiovascular events secondary to withdrawal of statins
 - Statins reduce cardiovascular endpoint events by 30%

Endogenous Risk Factors for ADRs Associated with Statins

- Advanced age (>80 yrs)
- Small body frame & fragility
- Female sex
- Multisystem disease (e.g., renal function impairment, hypothyroidism, diabetes)
- History of metabolic muscle disease
- Medications metabolized through P-450 3A4

‘Statin Myopathy’

Original Definition:
Myalgias that develop with statin therapy accompanied by a serum CK activity >10XULN
Limitations of Definition

- Degrees of myositis + rhabdomyolysis occur in patients with <9XULN CK
- Increased serum CK may occur in asymptomatic patients
- Some patients with statin myopathy have normal serum CK

Updated Definitions of Statin Myopathy

- **Myalgia**: focal or diffuse muscle aches or weakness with normal CK (ACC/AHA/NHLBI)
- **Myopathy**:
 - Any disease of muscle (ACC/AHA/NHLBI)
 - Myalgia with CK $\geq 10\times$ULN (NLA & FDA)
- **Myositis**: muscle pain with CK elevation (ACC/AHA/NHLBI)
- **Rhabdomyolysis**: severe muscle damage with damage to another organ, e.g., kidney, and CK$\geq 10\times$ULN (ACC/AHA/NHLBI & NLA)
 - CK$>50\times$ULN + organ damage (FDA)

Joy TR, Hegele RA. Ann Intern Med 2009;150:858
What about severely affected patients with serum CK <10XULN?

Our Experience
Creatine Kinase in Severe Statin Myopathy

n=166

Derived from Guthrie Laboratory research data during NIH funded study on genetic susceptibility to statin-induced myopathy
Severe Adverse Reactions to Statin Therapy

- 0.2% (78,000) develop severe rhabdomyolysis (CK>10XULN)
- Additional severe cases with CK ranging from normal to 9XULN brings total to 0.52% (~203,000)
Prominent Clinical Features of Severe Statin Myopathy: Our Experience (n=281)

- Persistent symptoms (up to 88%)
- Muscle pain (46%)
- Muscle weakness (46%)
- Fatigue (14%)
- Progressive course (11%)
- Muscle cramps (10%)
Laboratory Features of Severe Statin Myopathy (n=281)

- Elevated serum CK (85%)
 141 of 166 reported
- Myoglobinuria (78%)
 15 of 19 reported
- Abnormal EMG (66%)
 46 of 70 reported
Summary: Our Definition of Severe Statin Myopathy

Robert Guthrie Biochemical & Molecular Genetics Laboratory

- Muscle weakness and/or pain or cramps specifically associated with statin therapy
- Associated fatigue
- Persistent or progressive symptoms may be present for weeks, months or years post therapy
- Serum CK ranging from normal to >10XULN
 - 2/3 expected in the range of 4XULN to >10XULN
Spectrum of Statin Tolerance Leading to Muscle Disease

<table>
<thead>
<tr>
<th>Condition</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic</td>
<td>(94.5%)</td>
</tr>
<tr>
<td>Mild Reversible Myalgias</td>
<td>(6%)</td>
</tr>
<tr>
<td>Severe Rhabdomyolysis</td>
<td>(0.5%)</td>
</tr>
</tbody>
</table>
Drug & Dose Dependence of Severe Statin Myopathy (n=155)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>%PerSx</th>
<th>Mos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin (52%)</td>
<td>10</td>
<td>97</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>83</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>100</td>
<td>18</td>
</tr>
<tr>
<td>Pravastatin (5%)</td>
<td>10</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>100</td>
<td>37</td>
</tr>
<tr>
<td>Simvastatin (21%)</td>
<td>10</td>
<td>67</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>78</td>
<td>33</td>
</tr>
<tr>
<td>Rosuvastatin (9%)</td>
<td>5</td>
<td>75</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>88</td>
<td>24</td>
</tr>
</tbody>
</table>
Hypothesis

A higher proportion of individuals with statin myopathy will have underlying metabolic disorders than expected in the general population.
Preliminary Studies

- Test Group: 136 severe statin myopathy cases
- Controls:
 - 100 general population (no exposure to statins)
 - 116 statin tolerant
 - 106 non-statin myopathy
- Biochemical analysis of muscle biopsies
- Exercise Intolerance Mutation Profile
Biochemical Studies

- 52% of biopsies had significant biochemical deficiencies
 - 31% of these with multiple deficiencies
 - CK more likely ≥10XULN in patients with multiple deficiencies
- Coenzyme Q10 and CPT were most commonly reduced
 - 2.3-fold more men than women had muscle CoQ10 deficiency (P=0.009)
Conclusions from Molecular Studies

- 10% of myopathic patients had disease-causing mutations (3% with mutations among statin-tolerant controls)
- Carriers for CPT II deficiency and McArdle disease increased 12- and 20-fold, respectively, over general population
- Homozygotes for myoadenylate deaminase deficiency increased 3.25-fold
GENETIC RISK FACTORS ASSOCIATED WITH LIPID-LOWERING DRUG-INDUCED MYOPATHIES

GEORGIENNE D. VLADUTIU, PhD,1 ZACHARY SIMMONS, MD,2 PAUL J. ISACKSON, PhD,1
MARK TARNOPOLSKY, MD, PhD,3 WENDY L. PELTIER, MD,4 ALEXANDRU C. BARBOI, MD,4
NAGANAND SRIPATHI, MD,7 ROBERT L. WORTMANN, MD,6 and PAUL S. PHILLIPS, MD7
Implications of Increased Carrier Status in Statin Myopathy

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Carrier Frequency</th>
<th>Homozygote Frequency</th>
<th>-fold increase in risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT II deficiency*</td>
<td>1/270</td>
<td>1/300,000</td>
<td>>1,000</td>
</tr>
<tr>
<td>McArdle disease**</td>
<td>1/170</td>
<td>1/100,000</td>
<td>>500</td>
</tr>
</tbody>
</table>

*Derived from data generated in the Guthrie Laboratory

**Haller RG. Arch Neurol 2000;57:923-4
Toward Statin Myopathy Risk Assessment

- Carriers for additional metabolic myopathies may be prevalent among patients with severe statin myopathy
A Case of Severe Statin Myopathy

Case Report: 54-year-old man

- Onset of muscle pain & severe exercise intolerance 2 mos. following initiation of atorvastatin therapy
- Persistent symptoms post-therapy with no weakness or atrophy
- Serum CK 10XULN
54-year-old Man with Statin Myopathy

Mutation Analysis:

Carrier for the common R50X mutation in the *PYGM* gene causative for McArdle disease
Is the finding of genetic risk factors for statin myopathy good news for drug companies?
Yes!

- ADRs are not necessarily due to statins
- ADRs may be due, in large part, to genetic susceptibility for muscle disease
- Alteration of dosage or statin type may help reduce or prevent symptoms
Is the finding of genetic risk factors for statin myopathy good news for physicians?
Yes!

- Selected testing of high risk individuals will identify many of those at risk for ADRs and allow better medical management
Serum Creatine Kinase Monitoring During Statin Therapy

- Important to know baseline CK
- Racial variation exists
 - African Amer males (800-1,000 U/L)
- Gender differences
 - CK > in males than females
- Asymptomatic familial HyperCKemia exists (Baker & Samjoo, Can J Neurol, 2008)
 - Elevated CK may persist post-therapy
Indications That Qualify Patients for Genetic Testing Prior to Statin Therapy

- History of muscle disease
- Idiopathic hyperCKemia
- Multi-system disease
Testing of High Risk Groups

- Baseline CK at least for anyone with the core endogenous risk factors
- Mutation panel for common metabolic myopathies
 - McArdle disease
 - CPT II deficiency
 - Myoadenylate deaminase deficiency
 - Additional disorders to be included
Statin Myopathy
Project Collaborators

Cedars-Sinai Medical Center, Los Angeles
Robert Davidson, M.D.
Dani Hackner, M.D.
Prediman Shah, M.D.
Michael Weisman, M.D.

Columbia University Medical Center – New York
Alfred Slonim, M.D.

Dartmouth Hitchcock Medical Center – Lebanon, NH
Robert Wortmann, M.D.
Henry Ford Hospital – Detroit
Niganand Sripathi, M.D.

Johns Hopkins University Myositis Center - Baltimore
Alan Baer, M.D.
Lisa Christopher-Stine, M.D.
Andrew Mammen, M.D.

McMaster Children’s Hospital/
Hamilton Health Sciences Foundation
Steven Baker, M.D.
Mark Tarnopolsky, M.D., Ph.D.

Medical College of Wisconsin - Milwaukee
Alexandru Barboi, M.D.
Wendy Peltier, M.D.

University at Buffalo
Paul J. Isackson, Ph.D.
Edward Fine, M.D.
Comprehensive Genotyping for Susceptibility to Metabolic Muscle Disease

Funding Source: STTR Grant Phase I NHLBI
Comprehensive Genotyping: Categories of Disease

<table>
<thead>
<tr>
<th>Disease</th>
<th>Number of Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty Acid Oxidation</td>
<td>7</td>
</tr>
<tr>
<td>CoQ10 deficiency</td>
<td>5</td>
</tr>
<tr>
<td>Glycogen Storage Disease</td>
<td>3</td>
</tr>
<tr>
<td>Muscular Dystrophies</td>
<td>4</td>
</tr>
<tr>
<td>Purine Cycle Defect</td>
<td>1</td>
</tr>
<tr>
<td>Malignant Hyperthermia</td>
<td>1</td>
</tr>
<tr>
<td>Mitochondrial Disease</td>
<td>5</td>
</tr>
<tr>
<td>Other</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>33</td>
</tr>
</tbody>
</table>
Comprehensive Genotyping for Susceptibility to Metabolic Muscle Disease

Test & Control Groups
Clinical Unknown Myopathy Group (n=392)
Severe Statin Myopathy Group (n=197)
Mild Statin Myopathy Group (n=163)
Statin-Tolerant Control Group (n=133)
Results of Genotyping

Variants & Mutations Detected (%)

<table>
<thead>
<tr>
<th>Disorder Category</th>
<th>Severe Statin Myopathy</th>
<th>Non-Statin Myopathy</th>
<th>Statin-Tolerant Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malignant Hyperthermia</td>
<td>1.5</td>
<td>2.1</td>
<td>0</td>
</tr>
<tr>
<td>Fatty Acid Oxidation Defects</td>
<td>13.5</td>
<td>7.0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>12.1</td>
<td>3.8</td>
<td>1.8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>27.1</td>
<td>12.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Mutations in Ryanodine Receptor Gene (\textit{RYR1}) Cause Malignant Hyperthermia (MH)

- 30 dominantly inherited causative mutations
 - Account for 50-60\% of causative mutations
- Prevalence 1 in 5,000 to 1 in 50,000 with incomplete penetrance
Comprehensive Genotyping for Susceptibility to Metabolic Muscle Disease

- STTR Grant Phase II
- NHLBI
Risk Groups Eligible for Metabolic Muscle Disease Testing

- Evidence for MH
 - FH, CHCT(+), EPI

- Exercise Intolerance + Rhabdomyolysis
 - McArdle disease
 - CPT II deficiency
 - Myoadenylate deaminase deficiency
 - Very-Long-Chain Acyl-CoA dehydrogenase deficiency

- Other Clinical Entities
 - Viral-induced myositis
 - Inflammatory myositis
 - Muscular dystrophies
 - Muscle weakness
 - Hyper-CK-emia

- Multi-Trigger Exposure
 - Extreme exertion
 - Extremes in temperature
 - Drug exposure (e.g., statins)
 - Fasting
 - Anesthesia
 - Sleep deprivation
 - Viral infection

- Armed Services Personnel
- Individuals taking statins
Statin Myopathy Study

5-yr RO1 NHLBI

Cathy Kern – Research Coordinator

ckern@buffalo.edu

www.rgbmgl.org