Atherosclerosis, Lipids and Lipoproteins
Objectives

• Describe the functions and sources of cholesterol and triglycerides
• Describe the functions and role of lipoproteins in atherosclerosis
• Explain the pathogenesis of atherosclerosis
• Identify the role of inflammation in atherosclerotic process
Presentation Outline

• Pathophysiology of Atherosclerosis
 – Early, Middle and Late Stages
 – Interaction among key elements: endothelial dysfunction, lipoprotein B particle infiltration and oxidation, inflammation, plaque rupture, thrombosis

• Lipid and Lipoprotein Metabolism
 – Key principles
 – Key lipoproteins
 – Key enzymes and transfer proteins

• Common Atherogenic Dyslipidemias
 – Elevated LDL & related (↑LDL-C, non-HDL-C, apo B, LDL-P)
 – Elevated TG, low HDL, small, dense LDL
 – Elevated Lp(a)
 – Mixed dyslipidemias
ATHEROGENESIS OVERVIEW
Atherosclerosis:
A *single* pathologic process beginning early in life, potentially in utero that progresses throughout the lifetime and is the *greatest* cause of death and disability in the Western world (~1/3 of all US mortality)
Atherogenesis Overview

Most atherosclerosis/CVD risk factors are lipoproteins or are lipoprotein-related
Atherogenesis: Overview

Atherogenesis involves a cascade of events (mainly top to bottom of this list, but with some feedback in reverse)

- High plasma apo B lipoproteins (Lp B = All non-HDL) **PLUS** focal endothelial trauma/dysfunction
- ↑ Infiltration of Lp B into the subendothelium (SE)
- ↑ Retention of Lp B in the SE
- ↑ Modification of Lp B in the SE
- ↑ Inflammation
- Plaque **rupture**
- **Thrombosis**
- ↓↓↓ **Blood flow**
- **Ischemic event**
Atherosclerosis Timeline

Progression in women lags by a decade

Endothelial dysfunction

In Utero through 1st decade
- Growth mainly by lipid accumulation

From third decade
- Smooth muscle and collagen

From fourth decade
- Thrombosis, hematoma

Adapted from Pepine CJ. Am J Cardiol. 1998; 82(suppl.10A):23S-27S.
Early Stages of Atherogenesis: Arterial Endothelium

Healthy

Causes
- Laminar flow
- *Lack* of Subendothelial Lp accumulation

Effects
- Anti-inflammatory
- Anti-oxidative
- Anti-thrombotic
- *(normal vasodilatation)*

Dysfunctional

Causes
- *Turbulent* flow
- Subendothelial Lp *accumulation*

Effects
- Pro-inflammatory
- Pro-oxidative
- Pro-thrombotic
- *(abnormal vasodilatation)*

Early Stages of Atherogenesis: Apo B Lipos in Subendothelial Space

Contributions of Lp B (=LDL+ other Non-HDL Particles)

• **Lp B entry** into subendothelium ↔ **endothelial dysfunction**.

• **Lp B retention/binding** to subendothelial matrix – (proteoglycans, elastin, collagen)

• **Lp B Modification**
 – Lipolysis
 – Aggregation/fusion
 – Oxidation

• **Lp B uptake** by macrophages

Mechanism of Lipoprotein Retention: Role of Extracellular Matrix

- Lipoprotein retention is mediated by physical interaction between lipoproteins and matrix molecules\(^1,^2\)
 - Proteoglycans, collagen, elastin, fibronectin, vitronectin, etc
- Accessory molecules promote lipoprotein retention\(^1,^2\)
 - Lipoprotein lipase, secretory sphingomyelinase, secretory phospholipase A\(_2\)

\(^1\) Adapted from Tabas I et al. *Circulation.* 2007;116(16):1832–1844.

Cardiovascular Risk Increases With Increased Plasma Apo B Lipoproteins

Rationale for therapeutic lowering of Lp B: to decrease the inflammatory response to retention

Atherosclerosis Timeline - Early Lesions

Not clear what determines progression vs. regression from fatty streak - Potentially reversible in utero

Adapted from Pepine CJ. Am J Cardiol. 1998; 82(suppl.10A):23S-27S.
Middle Stages of Atherogenesis

- Lipid-laden macrophages = foam cells
- Foam cells undergo apoptosis
- Foam cell apoptosis triggers:
 - ↑Macrophage recruitment
 - Monocyte adhesion and diapedesis thru endothelium
 - SMC chemotaxis and transformation
 - ↑Inflammation ↔ ↑Oxidation
 - ↑Lp B (=all Non-HDL) retention
 - ↑Lp B modification (various enzymes)
 - ↑Macrophage Lp B ingestion → foam cell
 - More foam cell apoptosis
Atherosclerosis: A Self-Feeding Inflammatory Cycle

Inflammatory Response to Atherogenic Lipoproteins

ICAM1 = intercellular adhesion molecule 1; oxLDL = oxidized low-density lipoprotein; VCAM1 = vascular cell adhesion molecule 1.

Middle-Late Atherosclerosis: Complex and Vulnerable Plaques

• Inflamed/apoptotic macrophages secrete matrix metalloproteases (MMP-9, etc)

• MMP effects:
 – Outward: remodeling of adventitia → vessel enlargement
 – Inward: erosion of collagen and elastin → thinning and weakening of the fibrous cap (plaque instability)
Atherosclerosis Timeline - *Middle Lesions*

Adapted from Pepine CJ. *Am J Cardiol.* 1998; 82(suppl.10A):23S-27S.
Arterial Remodeling

Late-Stage Atherosclerosis: Plaque Rupture and Acute Vascular Events

• Plaque rupture* due to
 – Matrix metalloproteases (MMP-9, etc)
 – Other inflammatory processes
 – Angiogenesis/neovascularization within the plaque
 – Mechanical effects

• Intra-arterial thrombosis:
 – Exposure of highly prothrombotic material (SE matrix, inflammation, etc.)
 – Pro-thrombotic state (plt. activation, increased soluble coag. factors)

• Acute ischemic event (MI, USA, CVA, sudden death, critical limb ischemia)

*Endothelial erosion may cause thrombosis w/o prior rupture, but these are mural thrombi, which are less likely to cause an acute CV event.
Unstable vs. Stable Plaque

Unstable Plaque
- 86% of Fatal MIs: < 70% prior stenosis
 - Large lipid core
 - Thin fibrous cap
 - ++macrophages
- 14% of Fatal MIs: > 70% prior stenosis
 - Small lipid core
 - Thick fibrous cap
 - ++SMCs

Clinical Manifestations of Different Types of Coronary Atherosclerosis

- Fixed stenosis → Stable angina
 Gradual Progression—Less common

- Plaque rupture → Unstable angina
 - Myocardial infarction
 - Sudden Death
 Rapid Progression—More Common
Up to 90% of AMI may be due to plaque rupture; AmHeartJ 1977;93:468.

Adapted from Pepine CJ. Am J Cardiol. 1998; 82(suppl.10A):23S-27S.
Regression of Atherosclerosis

• “Holy Grail” of atheroprevention (!?)
 – Plaque regression=“Nirvana”
 – Debates over “magic threshold” of LDL-C, non-HDL-C, HDL-C, CRP, etc.

• Not very useful if looking only at plaque thickness/size
 – Stability more important than size
 – Events can still occur with little or no stenosis
 – Events may be avoided just by stopping progression or ↓ growth

• Regression is a reasonable goal, but may be neither necessary nor sufficient to prevent CVD events
How Decreasing Plasma Lp B Levels Can Decrease Atherosclerosis and CV Risk

How Decreasing Plasma Lp B Levels Can Decrease Atherosclerosis and CV Risk

How Decreasing Plasma Lp B Levels Can Decrease Atherosclerosis and CV Risk

How Decreasing Plasma Lp B Levels Can Decrease Atherosclerosis and CV Risk

How Decreasing Plasma Lp B Levels Can Decrease Atherosclerosis and CV Risk

How Decreasing Plasma Lp B Levels Can Decrease Atherosclerosis and CV Risk

Rationale for therapeutic lowering of Apo B lipoproteins: decrease the probability of inflammatory response to retention

How Decreasing Plasma Lp B Levels Can Decrease Atherosclerosis and CV Risk

How Decreasing Plasma Lp B Levels Can Decrease Atherosclerosis and CV Risk

Rationale for therapeutic lowering of Apo B lipoproteins: decrease the probability of inflammatory response to retention

Atherogenesis: Prevention/Regression

- ↓ Plasma apo B lipoproteins (Lp B) PLUS ↓ focal endothelial trauma?
- ↓ Infiltration of Lp B into subendothelium (SE) PLUS increase LDL size
- ↓ Retention of Lp B in SE
- ↓ Modification of Lp B in SE
- ↓ Inflammation
- Prevention of plaque rupture
- Prevention of thrombosis
- No ↓↓ Blood flow
- No ischemic event
Summary:
Pathophysiology of Atherosclerosis

- Main elements are all interactive (multiple adverse feedback loops)
- Key areas of focus:
 - Apo B lipoproteins
 - Retention
 - Oxidation/modification
 - Inflammation
 - HDL to block/reverse above
- Stages:
 - Early—probably reversible
 - Middle—goal: regression vs. stabilization?
 - Late—main goal: stabilization of vulnerable plaques, prevention of new plaques
LIPID AND LIPOPROTEIN METABOLISM
Why Lipoproteins?

• Oil and water don’t mix
• *Lipids* (triglycerides, phospholipids, sterols) need vehicles (lipoproteins) to travel through *aqueous* media:
 – Lymph
 – Plasma
• Lipid transport (via lipoproteins) helps:
 – Absorb/distribute *dietary/intestinal* lipids
 – Re-distribute *endogenous* lipids
 – Energy use/storage—TG only
 – Cell structure—Chol, PL?
 – Cell function—Apo A-I, other?
Structure of a Typical Lipoprotein

- **Free cholesterol** *(surface and core)*
- **Phospholipid** *(amphipath at surface only)*
- **Triglyceride** *(core only)*
- **Apolipoprotein** *(amphipath at surface only)*
- **Cholesteryl ester** *(core only)*
Lipoprotein Classes: Physical Dimensions

CHYLCMICRON

KEY

* PHOSPHOLIPID
* FREE CHOLESTEROL
* TRIGLYCERIDE
* ESTERIFIED CHOLESTEROL

VLDL

"CORE" VOLUME = 524 x 10^6 Å^3
"SHELL" VOLUME = 68 x 10^6 Å^3

300 Å

> 1000 Å

20 Å Polar Shell

VLDL (range)

IDL

LDL (range)

HDL

"CORE" VOLUME = 41 x 10^6 Å^3
"SHELL" VOLUME = 13 x 10^6 Å^3

C.V. = 10.3 x 10^6 Å
S.V. = 5.6 x 10^6 Å

C.V. = 3.05 x 10^6 Å
S.V. = 2.67 x 10^6 Å

170 Å

100 Å
Lipoprotein Classes: Chemical Composition

CHYLOMICRON

IDL

LDL

HDL

VLDDL

KEY (%)

- PHOSPHOLIPID
- FREE CHOLESTEROL
- PROTEIN
- TRIGLYCERIDE
- CHOLESTEROL ESTER

- FREE CHOLESTEROL 2%
- PROTEIN 50%
- PHOSPHOLIPID 24%
- TRIGLYCERIDE 4%
- AND ESTERIFIED CHOLESTEROL 20%
Lipids

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Lipophil.</th>
<th>Function</th>
<th>Location in Lipoprotein</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG</td>
<td>+++</td>
<td>Energy</td>
<td>Core</td>
<td>Common</td>
</tr>
<tr>
<td>Free fatty acids</td>
<td>+++</td>
<td>Energy</td>
<td>Not in lipo; w/ albumin</td>
<td>Common</td>
</tr>
<tr>
<td>Chol-Ester</td>
<td>+++</td>
<td>Chol. storage</td>
<td>Core</td>
<td>Common</td>
</tr>
<tr>
<td>Free Chol</td>
<td>++</td>
<td>Membranes hormones</td>
<td>Inner shell + core</td>
<td>Common</td>
</tr>
<tr>
<td>Oxid Chol</td>
<td>+</td>
<td>Signaling?</td>
<td>Inner shell?</td>
<td>Rare</td>
</tr>
<tr>
<td>Plant Sterol</td>
<td>+</td>
<td>??</td>
<td>Inner shell?</td>
<td>Rare</td>
</tr>
<tr>
<td>Phospholipid</td>
<td>+++/-- (amphip)</td>
<td>Structure</td>
<td>Shell</td>
<td>common</td>
</tr>
</tbody>
</table>
Major Apolipoproteins

<table>
<thead>
<tr>
<th>Apo</th>
<th>Location</th>
<th>Function</th>
<th>Plasma Levels</th>
<th>Athero</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-I</td>
<td>HDL (Chyl)</td>
<td>Multi anti-athero</td>
<td>High</td>
<td>↓↓↓↓</td>
</tr>
<tr>
<td>A-II</td>
<td>HDL</td>
<td>??</td>
<td>Moderate</td>
<td>↓?</td>
</tr>
<tr>
<td>B-48</td>
<td>Chyl</td>
<td>Exog. TG & Ch transp</td>
<td>Moderate (post-prandial only)</td>
<td>↑?</td>
</tr>
<tr>
<td>B-100</td>
<td>VLDL, LDL</td>
<td>Deliver endog. cholesterol</td>
<td>High</td>
<td>↑↑↑</td>
</tr>
<tr>
<td>C-II</td>
<td>VLDL, HDL</td>
<td>↑LPL activity</td>
<td>Low</td>
<td>↓</td>
</tr>
<tr>
<td>C-III</td>
<td>VLDL, HDL</td>
<td>↓LPL, plq rupt?</td>
<td>Low</td>
<td>↑↑</td>
</tr>
<tr>
<td>E</td>
<td>VLDL, HDL</td>
<td>Remn Lp Catab, Chol Efflux?</td>
<td>Low</td>
<td>↑↑↑↑/↓?</td>
</tr>
<tr>
<td>(a)</td>
<td>Lp(a)</td>
<td>Ox FFA scaveng</td>
<td>Low</td>
<td>↑↑↑</td>
</tr>
</tbody>
</table>

Apo B-100 and Apo A-I are most important clinically, but all are important.
Lipoprotein Composition and Function

<table>
<thead>
<tr>
<th>Lipoprotein</th>
<th>Apolipoproteins</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chylomicrons, Chylo-remnants</td>
<td>B-48 (A-I, C-II, C-III, and E)</td>
<td>Delivers TG & Chol (intestinal or exog. path)</td>
</tr>
<tr>
<td>VLDL, IDL</td>
<td>B-100 (C-II, C-III, E)</td>
<td>Delivers TG & Chol (endogenous path)</td>
</tr>
<tr>
<td>LDL</td>
<td>B-100</td>
<td>Delivers Chol (endogenous path)</td>
</tr>
<tr>
<td>Lp(a)</td>
<td>B-100, apo (a)</td>
<td>Delivers Chol (endogenous path)</td>
</tr>
<tr>
<td>HDL</td>
<td>A-I, A-II (C-II, C-III, E)</td>
<td>Steroid horm. synth. Anti-infect, Anti-athero</td>
</tr>
</tbody>
</table>

It is important to know all of these major lipoprotein fractions.
Fredrickson Hyperlipidemia Classification

Plus 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Lipoprotein in excess</th>
<th>Frequency</th>
<th>Athero</th>
<th>T Chol (mg/dL)</th>
<th>TG (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Chylomicrons</td>
<td>v. rare</td>
<td>sl ↑?</td>
<td>~1/6 TG</td>
<td>>1000</td>
</tr>
<tr>
<td>IIa</td>
<td>LDL</td>
<td>common</td>
<td>↑ to ↑↑↑</td>
<td>>200</td>
<td><150</td>
</tr>
<tr>
<td>IIb</td>
<td>LDL, VLDL</td>
<td>common</td>
<td>↑ to ↑↑↑</td>
<td>>200</td>
<td>200-500</td>
</tr>
<tr>
<td>III</td>
<td>βVLDL, IDL</td>
<td>rare</td>
<td>↑↑↑</td>
<td>200-500</td>
<td>200-500</td>
</tr>
<tr>
<td>IV</td>
<td>VLDL</td>
<td>common</td>
<td>↑ to ↑↑</td>
<td><200</td>
<td>200-500</td>
</tr>
<tr>
<td>V</td>
<td>VLDL, Chylo</td>
<td>uncommon</td>
<td>↑ to ↑↑</td>
<td>~1/4 of TG</td>
<td>>500</td>
</tr>
<tr>
<td>---</td>
<td>Lp(a)</td>
<td>uncommon</td>
<td>↑ to ↑↑↑</td>
<td>nl</td>
<td>nl</td>
</tr>
<tr>
<td>---</td>
<td>Low HDL</td>
<td>common</td>
<td>↑ to ↑↑↑</td>
<td>↓ to ↑</td>
<td>>200</td>
</tr>
</tbody>
</table>

All are worth remembering, but focus most on the common ones.
Dyslipidemia and Disease

A. Pancreatitis—(↑↑↑TG + non-lipid causes only)
 1. ↑↑↑plasma TG + sl. leak of pancreatic lipase →
 2. Lipolysis →
 3. ↑↑↑FFA →
 4. Damage to pancreatic exocrine cells →
 5. Further leak of pancreatic lipase →
 6. Further lipolysis = vicious cycle

B. Atherosclerosis (#1 cause of death and disability)—most dyslipidemias are causal (adverse)
Major Lipid/Lipoprotein Modifying Factors

<table>
<thead>
<tr>
<th>Name</th>
<th>Class</th>
<th>Function</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>CETP</td>
<td>Shuttle</td>
<td>CE for TG</td>
<td>Plasma</td>
</tr>
<tr>
<td>PLTP</td>
<td>Shuttle</td>
<td>PL transfer (HDL recombin.)</td>
<td>Plasma</td>
</tr>
<tr>
<td>LPL</td>
<td>Lipase</td>
<td>TG lipol. (Chyl, VLDL, IDL)</td>
<td>Vascular endothelium</td>
</tr>
<tr>
<td>HL</td>
<td>Lipase</td>
<td>TG&PL hydrol (LDL, HDL)</td>
<td>Hepatic endothelium</td>
</tr>
<tr>
<td>EL</td>
<td>Lipase</td>
<td>Like HL?</td>
<td>Vascular endothelium</td>
</tr>
<tr>
<td>LpPLA2</td>
<td>Lipase</td>
<td>Cleaves Ox PL</td>
<td>LDL, HDL</td>
</tr>
<tr>
<td>LCAT</td>
<td>Esterifier</td>
<td>Chol ester.</td>
<td>HDL</td>
</tr>
</tbody>
</table>

Focus on CETP, LPL, HL and LCAT only. Others are FYI.
<table>
<thead>
<tr>
<th>Name</th>
<th>Class</th>
<th>Function</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPC1L1</td>
<td>Sterol transporter</td>
<td>Sterols into Enterocyte</td>
<td>Enterocyte</td>
</tr>
<tr>
<td>ABCG5/8</td>
<td>Sterol transporter</td>
<td>Plant Sterol out of enterocyte</td>
<td>Enterocyte</td>
</tr>
<tr>
<td>ACAT</td>
<td>Esterifier</td>
<td>FC to CE (C storage)</td>
<td>Intracellular</td>
</tr>
<tr>
<td>CEH</td>
<td>CE Hydrolase</td>
<td>CE to FC (C release)</td>
<td>Intracellular</td>
</tr>
<tr>
<td>ABCA1</td>
<td>Chol. Efflux</td>
<td>Chol to lipid poor Apo A-I particle</td>
<td>Cell surface</td>
</tr>
<tr>
<td>ABCG1</td>
<td>Chol. Efflux</td>
<td>Chol efflux to spherical HDL, etc.</td>
<td>Cell surface</td>
</tr>
<tr>
<td>SR-B1</td>
<td>Chol. Influx</td>
<td>Accepts chol from HDL (also donor?)</td>
<td>Cell surface</td>
</tr>
<tr>
<td>HSL</td>
<td>Lipase</td>
<td>Hydrolyze TG (rel. from adipocytes)</td>
<td>Intracellular (adipocytes)</td>
</tr>
<tr>
<td>PCSK9</td>
<td>LDL-R Chaperone protein</td>
<td>Targets LDL receptor for lysosomal degradation</td>
<td>Intra and extra-cellular</td>
</tr>
</tbody>
</table>

All are given FYI only: you do not need to memorize these!
Enterohpetic Cholesterol Transport (intestine to liver)

Liver

Dietary chol

Intestine

Intralumen Chol

Fecal neutral sterols

Biliary chol

Acetyl CoA

Chol

Remnant receptor

Chylomicron remnants

Chylomicrons

NPC1L1

Extrahepatic tissues

VLDL-C

IDL-C

LDL-C

LDL-R

LDL-R

LDL-R
Enterocyte Transport of Luminal Cholesterol (diet + bile)

Plant sterol has same paths as cholesterol (C) but much less net absorption
Plasma Metabolism of Intestinally-Derived Cholesterol

Lymph

Chylomicron

Chylomicron

Chylomicron remnant

TG

LPL

FA

Sk Muscle/Heart/Adipose tissue

Liver

Remnant receptor

Blood

Atherogenesis

Apo B-48
Apo E
Apo C-II
Lipoprotein lipase (LPL)
Remnant receptor
Endogenous Cholesterol Transport (liver to periphery to liver)

Liver

Dietary chol

Biliary chol

Intra-lumen Chol

Fecal neutral sterols

Intestine

Acetyl CoA

Chol

VLDL-C

IDL-C

LDL-C

Remnant receptor

Chylomicron remnants

Chylomicrons

NPC1L1

Extrahepatic tissues

Acetyl CoA

Chol

LDL-R

LDL-R

LDL-R

www.lipid.org
The Role of PCSK-9 in the Regulation of LDL Receptor Expression

LDL=low-density lipoprotein; LDL-R=LDL receptor; PCSK9=proprotein convertase subtilisin/kinexin type 9; SREBP-2=sterol regulatory element-binding protein-2.
Lipid and Lipoprotein Metabolism in the Normal Person

Glycerol
 DGAT2
 Fatty acids

Cholesteryl ester
 Triglyceride

VLDL
 (Very–low-density lipoprotein)
 TG:Cholesterol=5:1 ratio

Apo B

Liver
Lipid and Lipoprotein Metabolism in the Normal Person

Muscle and adipose tissue

Fatty acids

Lipoprotein lipase

Lipoprotein Lipase

Apo C-II enhances and apo C-III inhibits LPL activity

Apo B and apo E are ligands for LDL receptor

LDL (apo B,E) receptor clears VLDL, IDL & LDL

Bloodstream

IDL

LDL

VLDL

Liver

Hepatocyte

www.lipid.org
Metabolism and Atherogenicity of Apo B–Containing Lipoproteins1-4

Liver

Dietary chol → Biliary chol

Intra-lumen Chol

Chylomicrons

NPC1L1

VLDL-C → IDL-C → LDL-C

Remnant receptor

Fecal neutral sterols

Chylomicron remnants

Acetyl CoA

Atherogenesis

Summary:
Lipid and Lipoprotein Metabolism

• Major Lipoproteins
 – Chylomicrons
 – VLDL → IDL → LDL
 – Lp(a) (origin/metabolic relationship to LDL unknown)
 – HDL

• Major Functions
 – TG transport (energy)—mainly Chylomicrons and VLDL
 – Cholesterol transport (cellular functions, hormone & bile synthesis) —mainly LDL and HDL
 – Anti-infective (anti-inflam, anti-athero)—mainly HDL
 – No known “primary” function for Lp(a)

• Disease Relationships
 – Pancreatitis
 – Atherosclerosis
 – Other?
Common Types of Atherogenic Dyslipidemia
Common Types of Atherogenic Dyslipidemia

• ↑TG + ↓HDL-C + small, dense LDL
 – 1o: few \textit{monogenic}
 – 1o + 2o: many factors + polygenic
 – 2o: many factors (↑Glucose, ↓thyroid, etc, etc.)

• ↑LDL-C
 – 1o: FH and other \textit{monogenic}
 – 1o + 2o: Bad diet + polygenic
 – 2o: few other factors

• Combination = mixed dyslipidemia
TG and HDL-C Both Contribute to CHD Risk

Adapted from Hopkins PN, et al. JACC 2005 Apr 5;45(7):1003-12.
Triglycerides Are Independently Associated With Premature Familial CHD*

*Triglyceride odds ratio adjusted for HDL-C; n=653 (Family History=early CHD), n=1029 (control). CHD=coronary heart disease; HDL-C=high-density lipoprotein cholesterol.

TG >150 mg/dL Increases CHD Risk Independent of LDL-C Levela

PROVE IT-TIMI 22 Trialb

- Achieving optimal TG (<150 mg/dL) may help reduce residual CVD risk in statin-treated post-ACS patients

\[\text{CHD Event Rate After 30 Days, %}\]

\[\begin{array}{c|c|c|c}
\hline
\text{LDL-C} & \text{TG <150} & \text{TG ≥150} \\
\hline
≥70 & 11.7\% & 15.0\% \text{ HR: 0.72 P=.017} \\
<70 & 16.5\% & 17.9\% \text{ HR: 0.84 P=.192} \\
\hline
\end{array}\]

aDeath, MI, and recurrent ACS

bACS patients on atorvastatin 80 mg or pravastatin 40 mg

Adjusted for age, gender, low HDL-C, smoking, HBP, obesity, diabetes, prior statin Rx, prior ACS.

Compared with LDL-C ≥70 mg/dL and TG ≥150 mg/dL, lower CHD risk was observed with low on-treatment TG (<150 mg/dL) and LDL-C (<70 mg/dL) (HR = 0.72; P = .017)

James Underberg, 4/15/2014
How Can Hypertriglyceridemia (HTG) Be Atherogenic?

- TGRL carry cholesterol and promote atherosclerosis (especially remnants)*
- VLDL is precursor to LDL (pro-atherogenic)
- HTG drives:
 - CE enrichment of VLDL (more atherogenic)*
 - ↓ LDL size (small, dense LDL are more atherogenic)*
 - ↓ LDL-C (small, dense LDL carry less cholesterol)*
 - ↓ HDL size (small, dense HDL are unstable and less anti-atherogenic)
- HTG is linked to other pro-atherogenic states*
 - Insulin resistance
 - Endothelial dysfunction
 - Pro-oxidative state
 - Pro-inflammatory state
 - Prothrombotic state

*Reasons why non-HDL-C is stronger than LDL-C as CVD factor.

CE=cholesteryl ester; TGRL=triglyceride-rich lipoproteins; VLDL=very low-density-lipoprotein.
Dyslipidemias Secondary to Hypertriglyceridemia

- Increased VLDL
- Hepatic lipase
- Increased triglycerides
- Rapid renal filtration of apo A-I
- Small, dense HDL
- Small, dense LDL
- Hepatic lipase

Bloodstream
Three Atherogenic Consequences of Hypertriglyceridemia

1. ↑TG/VLDL-C
2. SD LDL
3. ↓HDL-C

“Athero Dyslip”

CETP = cholesterol ester transfer protein
no arrow needed here. Small dense LDL formed but not necessarily more of them so would be hesitant to add the upward arrow.

James Underberg, 4/15/2014
Potential Impact of Small Dense LDL (pattern B)

And Associates with Metabolic Syndrome/DM: \(\downarrow \) HDL, \(\uparrow \) TG, \(\uparrow \) Inflam., \(\uparrow \) Thromb., \(\uparrow \) Oxid.

LDL-C Doubly Underestimates CVD Risk in Cases of Small, Dense LDL

Large LDL

Small, Dense LDL

Apo B

Cholesterol Ester

Fewer Particles & Less Risk/Particle

LDL-C 130 mg/dL

More Particles & More Risk/Particle

Lipid profile:

- TC: 198 mg/dL
- LDL-C: 130 mg/dL
- TG: 90 mg/dL
- HDL-C: 50 mg/dL
- Non–HDL-C: 148 mg/dL

Lipid profile:

- TC: 210 mg/dL
- LDL-C: 130 mg/dL
- TG: 250 mg/dL
- HDL-C: 30 mg/dL
- Non–HDL-C: 180 mg/dL

Adapted from Otvos JD, et al. Am J Cardiol. 2002;90:22i-29i.
High Triglycerides Are Strongest Predictor of Small, Dense LDL (Pattern B)

LDL=low-density lipoprotein; TG=triglyceride.

What Is Non–HDL-C?

non–HDL-C = Total cholesterol - HDL-C

Non–HDL-C Is Stronger than LDL-C in Predicting CHD Risk
The Framingham Study

(Average follow-up time was about 15 years)

• Within non–HDL-C levels, no association was found between LDL-C and the risk for CHD
• Strong, positive, graded association of non–HDL-C w/ CHD seen at every LDL-C level

HDL-C=high-density lipoprotein cholesterol; LDL-C=low-density lipoprotein cholesterol.

Testing for Atherosclerosis/CVD Risk in HTG Patients

Required/Routine
- ↑TG level
- ↓HDL-C

Other Measures
- ↓LDL size (GGE, ultracentrifuge, NMR)
- ↑Non-HDL-C (=Total C – HDL-C)
- ↑Apo B-100
- ↑LDL-P (particle concentration, NMR only)
- ↑Remnant lipoproteins (RLP-C vs subfract)
- ↑VLDL-C & VLDL-C/TG (UC, “beta-quant”)
- ↑hsCRP (MetSynd surrogate)
LDL-C and Non-HDL-C

LDL-C
- Focus of most research
- Focus of current guidelines
- Always *reported* in lipid profile

Non-HDL-C
- Conceptually better (*all pro-athero lipos*)
- Stronger CVD factor
- Valid in HTG
- Valid non-fasting
- Always *measured* in lipid profile (“free”)

Bottom line: Non-HDL-C is much better (no unique advantages of LDL-C) but we are stuck with LDL-C for now!
Non-HDL-C and Apo B

Non-HDL-C

- **Cholesterol** content conceptually better (*causal* role)
- *Free* with lipid profile (*no* extra testing needed)
- Well standardized
- Already incorporated in guidelines

Apo B

- Apo B *may* play *causal* athero role
- Gives non-HDL particle count
- Good standardization
- Stronger CVD factor? (some dyslipidemias)
- Complementary to non-HDL-C?

Bottom line: Non-HDL-C cheaper/easier, best routine
Apo B likely gives ↑info but at ↑cost, ok as adjunct
Relations of LDL Particles and LDL Cholesterol to Levels of HDL Cholesterol and Triglycerides

LDL-P Includes Remnants, Pools Lipid Risk in Metabolic Syndrome

Framingham Offspring Study

Otvos JD. J Lab Medicine 2002;26(11/12):555-556.
LDL-P and Non-HDL-C

Non-HDL-C
- Includes all atherogenic particles
- *Free* with lipid profile
- Universally available
- Already incorporated into guidelines
- **Better** than LDL-P (w/ best apo B assay)

LDL-P
- *Well* studied
- Good CVD risk prediction (incl. some remnants)
- Well standardized
- *Beats* non-HDL-C (*some* studies)
- May suggest more aggressive Rx

*Bottom line: Non-HDL-C cheaper/easier, best routine
LDL-P gives ↑info but at ↑cost, ok as adjunct*
- **Lp(a) levels are genetically determined**
 - more kringle-repeats in gene →
 - longer apo(a) →
 - less apo(a) synthesis →
 - lower apo(a) levels

- Measurement important but difficult (protein vs chol?)

- **Pro-athero mechanisms of Lp(a):**
 - More oxidized (=more atherogenic) vs LDL
 - Scavenges and spreads oxidized FFAs
 - Pro-thrombotic? (plasmin competitor, ↑PAI-1 synth)
 - Slow LDL-R clearance (poor binding)

- ↑ in Acute Coronary Syndrome (why?)

HDL: Protective but Clinically Difficult
In HDL and all lipoproteins, unesterified cholesterol partitions between the core and inner aspect of the surface.
Pre-beta HDL is unique among lipoproteins in being non-spherical. Smaller, pre-beta-1 HDL is globular and has almost no lipid. Pictured here is pre-beta-2 HDL which is discoidal with apolipoproteins wrapped around a circular PL bilayer.

Low HDL-C associated with increased CHD Risk in observational data

*Data represent men age 50–70 yr from the Framingham Study.

Adapted from and reprinted with permission from Castelli WP. Can J Cardiol. 1988;4(suppl A):5A.
Low HDL-C & CVD events in TNT
In patients with LDL-C lowered to <70 mg/dL

Post-hoc, TNT Subjects w/ LDL-C ≤70 mg/dL on Statina,b

<table>
<thead>
<tr>
<th>HDL-C Quintilesa</th>
<th>Q1 (<37)</th>
<th>Q2 (37 \text{ to } <42)</th>
<th>Q3 (42 \text{ to } <47)</th>
<th>Q4 (47 \text{ to } <55)</th>
<th>Q5 (≥55)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard Ratio Versus Q1*</td>
<td>0.85</td>
<td>0.57</td>
<td>0.55</td>
<td>0.61</td>
<td></td>
</tr>
</tbody>
</table>

*On-treatment level (3 months statin therapy); n = 2661
bMean LDL-C, 58 mg/dL; mean TG, 126 mg/dL
*P=.03 for differences among quintiles of HDL-C

Suggested Anti-atherogenic Mechanisms of HDL

- Promotes \textit{reverse cholesterol transport}
- Partner in TG metabolism
- \textbf{Antioxidant}
 - Oxidized \textit{in place of} apo B particles?
 - \textit{Reverses oxidation} of apo B particles?
- \textbf{Pro}-endothelial
 - \textit{↑} NO production
 - \textit{↑} Endothelial repair (\textit{↑}EC progenitors, other?)
- \textbf{Anti}-coagulant
 - Anti-thrombotic (\textit{↓}plt. membr cholesterol)
 - Pro-fibrinolytic
- \textit{↑} Prostacyclin production
- \textbf{Anti-inflammatory}
 - \textit{↓} Cell-adhesion molecules
 - Scavenges acute-phase reactants
 - \textit{↓} Neutrophil degranulation
 - Anti-complement?
 - Anti-T-cell effect?
- \textbf{Anti}-apoptotic (prevents death of MΦ, EC, SMC)
- Blocks other adverse effects of apo B particles?

The Role of HDL in Reverse Cholesterol Transport

ABCA1, ATP-binding cassette protein A1; CETP, cholesterol ester transfer protein; FC, free cholesterol; LCAT, lecithin:cholesterol acyltransferase; SR-A, scavenger receptor class A; SR-BI, scavenger receptor class B type I.

Antioxidant Effects Mediated by HDL

CE-OOX, oxidized cholesterol esters; GPX, glutathione peroxidase; HETE, hydroxyeicosatetraenoic acid; HPETE, hydroperoxyeicosatetraenoic acid; HODE, hydroxyoctadecadienoic acid; HPODE, hydroperoxyoctadecadienoic acid; LOOX, lipid hydroperoxides; PAF-AH, platelet-activating factor acetylhydrolase; PON, paraoxonase.

HDL–Mediated Inhibition of Adhesion Molecule Expression

MCP-1 = monocyte chemoattractant protein-1

Summary: HDL

Diagnosis
• HDL-C level likely best/sufficient
• Apo A-I, HDL-P, HDL\textsubscript{2}-C good, \textit{not} needed

Causes
• \textit{Common}: insulin resistance, HTG (mod-sev), \textit{poor} lifestyle (cigarettes, sedentary, central obesity), polygenic factors
• \textit{Rare}: monogenic, androgen abuse

Consequences
• HTG (mild-moderate)
• Athero/CVD (most \textit{common} dyslip. in CHD)

Treatment \textit{difficult} (by TLC or drug)
Key Take-Away Messages: Major Dyslipidemias

• Chylomicrons and chylomicron remnants (apo B-48, etc.)
 – Mainly for transport of dietary TG (energy)
 – Seen in fasting plasma only if TG > 1000 (T½=mins)
 – Increased risk of pancreatitis when TG > 1000
 – ~Always due to decreased clearance (↓LPL)
 – Minor role in atherogenesis (chylo remnants only)

• VLDL+IDL (apo B-100, apo Cs, apo E)
 – Common/moderate TG increase (TG 200-500)
 – Due to ↑production (fatty liver) + ↓clearance (↓LPL)
 – Moderate role in atherogenesis

• LDL (apo B-100)—also Lp(a) variant
 – Mainly for cholesterol transport
 – Major atherogenic factor
 • Oxidation/Inflammation
 • Endothelial dysfunction

• HDL (apo A-I, etc)
 – Major atheropreventive (blocks/reverses ~all adverse effects of VLDL, IDL, LDL)
Key Take-Away Messages: Major *Dyslipidemias* (cont.)

Not associated w/-Insulin-resistance

- \uparrowLDL alone (Type IIa)—common *and* high-risk

Associated w/ Insulin-resistance

- \uparrowVLDL (usually w/ \downarrowHDL; if w/o \uparrowLDL = type IV)—common *and* high-risk
- \downarrowHDL-C (usually w/ \uparrowVLDL)—common *and* high-risk
- Mixed dyslipidemia: \uparrowLDL + \uparrowVLDL + \downarrowHDL (IIb, IV or V)—common *and* high-risk