Relationship between Lipid Levels and Coronary Atherosclerotic Plaque Scores by Coronary Computed Tomography Angiography (CTA) in Subjects with Elevated Triglycerides

Alice Lee1, April Kinninger1, Eranthi Jayawardena1, Chandana Shekar1, Kashif Shaikh1, Lavanya Cherukuri1, Christopher Dailing1, Sajad Hamal1, Ferdinand Flores1, Matthew Budoff1 and John R Nelson2

1Los Angeles Biomedical Research Institute, Torrance, CA; 2 California Cardiovascular Institute, Fresno, CA

Introduction

- Objective of the study: To analyze triglyceride, high density lipoprotein (HDL) cholesterol and low density (LDL) cholesterol levels in patients with high triglycerides (200-499 mg/dl) for a correlation with semi-quantitative plaque scores (non-calcified plaque, total plaque and coronary artery calcium (CAC) plaque scores) in patients from the EVAPORATE study.

- Summary of the EVAPORATE study: To analyze the effect of Vascepa (an omega-3 fatty acid) on improving coronary atherosclerosis in patients on statins with high triglyceride levels.¹

Methods

- 72 subjects of the EVAPORATE (Effect of Vascepa on Improving Coronary Atherosclerosis in people with High Triglycerides Taking Statin Therapy) trial received baseline Coronary CTA.

- Comprehensive blood panel was inclusive of LDL-C, HDL-C and Triglyceride levels (Boston Heart Diagnostics, Framingham, MA).

- Coronary CTA was evaluated using a modified 17-segment American Heart Association coronary tree model. CAC score, Total Plaque Severity (TPS: total amount of plaque in segment), Total Non-Calcified Plaque Score (TNPS) and Segment Involvement Score (SIS: total number of segments with plaque) were measured (AW, GE Medical Systems, Milwaukee, WI).

- Triglyceride, HDL-C and LDL-C levels were analyzed for an association with non-calcified, calcified and total plaque scores using multivariable regression analysis.

- Data was adjusted for age, gender, diabetes, hypertension, family history and current smoking.

Results

The strongest correlation was observed for HDL-C and increasing CAC (p=0.024) after adjusting for age, gender, diabetes, hypertension, family history of CAD and smoking.

Table 1 Baseline Characteristics in Patients with High Triglycerides

<table>
<thead>
<tr>
<th>Subjects at Baseline (n=72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid Levels (mg/dL)*</td>
</tr>
<tr>
<td>HDL Cholesterol (62.5% of 38.6 ± 10.6 subjects with<40 mg/dL)</td>
</tr>
<tr>
<td>LDL Cholesterol</td>
</tr>
<tr>
<td>Triglycerides</td>
</tr>
</tbody>
</table>

Table 2 Associations between Lipid Levels and Coronary Plaque Scores

HDL-C and TNPS	0.06
HDL-C and Total CAC Score*	0.024
HDL-C and TPS *	0.041

*Indicates significant associations with p < 0.05

References

Discussion

It is commonly known that high triglyceride3,4 and LDL-C levels2,4 are risk factors for coronary artery disease. However, in this study, these variables were not found to be significantly correlated (p>0.05) with higher plaque scores. This result may be explained by the small sample size and the uniform population, all with high triglycerides. Comparison with a low triglyceride group is planned. Another known risk factor for atherosclerosis is low HDL-C²,⁴, and we did find the association between HDL-C levels and high CAC scores to be significant (p<0.05).

Conclusion

- Among standard lipids, HDL-C is an independent predictor of total CAC score and total plaque severity.

- As higher plaque scores are associated with greater risk of coronary events, these findings show that HDL-C is an independent risk factor for coronary artery disease in persons with high triglycerides.

Figure 1 A 72 y/o man with high triglycerides. (A) Straightened view of the left anterior descending (LAD) artery. (B) A cross section of the LAD showing mixed, calcified and non-calcified coronary plaque. Coronary segmentation model and quantitative measurement of different plaque types. (D, E and F) Dense calcium: white; Necrotic core or low-attenuation plaque: red; Fibrous fatty: light green; Fibrous: dark green. LM = left main; pLAD = proximal left anterior descending artery; mLAD = mid left anterior descending artery.