HUMAN AND ANIMAL
ATHEROSCLEROTIC EFFECTS OF
APHERESIS, MTP INHIBITION, AND
ANTISENSE THERAPY IN
HYPERCHOLESTEROLEMIA (FH)

James M Falko, MD
Clinical Professor of Medicine
University of Colorado
Disclosures

• Merck- speaker, consultant
• Kowa-speaker
• Aegerion-speaker, consultant
• Genzyme-grant
Abstract-Outline

• Currently as of 2014 there are 3 approved therapies that have been utilized extensively in HoFH
 – These include: lomitapide, mipomersen, and LDL apheresis

• Review evidence in human and animal studies regarding the efficacy in reducing clinical events and regression of vascular lesions
 – In vivo data suggest mipomersen and lomitapide can cause regression; however, no human data is presently available. It remains unknown if their lipid effects (LDL, Lp(a), ApoCIII, ApoB-100, ApoB-48) will reduce CV events in humans
 – Apheresis demonstrated to regress atherosclerosis and reduce CV outcomes in humans
Selected references

Rosado, A et al. Does lipid apheresis in pts with isolated Lipoprotein(a) elevations reduce CV events. Artificial Organs 10;1111, 2013

Available therapies for FH over and above traditional treatments

- JUXTAPID (Lomitapide)
- KYNAMRO (Mipomersen)
- LDL apheresis
- PCSK9 Inhibitors (investigational)

These therapies are needed as most FH patients do not reach their LDL-C goal.
JUXTAPID (lomitapide)

Indication

• Lomitapide is a microsomal transfer protein inhibitor indicated
• Adjunct to low fat diet and other lipid-lowering treatments, including LDL apheresis where available
• Reduces LDL-C, TC, apo B, and non HDL-C in patients with homozygous familial hypercholesterolemia (HoFH)

Source: JUXTAPID (lomitapide) capsules full Prescribing Information. 12/2012
Lomitapide acts on both liver and intestine, and can inhibit apoB-100 and apoB-48 secretion.

MTP inhibition mimics abetalipoproteinemia.
Proof of Concept-MTP inhibition

2004 Implitapide suppressed atherosclerotic lesion area 83% compared to controls in Apo E knockout mouse fed a western diet after 8 weeks by lowering LDL and post prandial TG (chylomicrons) levels. Genetically induced

2011 MTP absence shows reversal of atherosclerosis “Reversa mice “

2013 Lomitapide a dose of 25 mg/kg in 16 weeks reduced inflammatory markers in lesions as well as reversing atherosclerosis plaques in LDL-receptor-deficient mice fed a western diet
LOMITAPIDE RAPIDLY REGRESSES ATHEROSCLEROSIS IN LDL RECEPTOR NEG MICE

Hewing, B et al Atherosclerosis 227;125,2013

www.lipid.org
Efficacy of lomitapide in HoFH

Mean percent changes in LDL-C, TC and apoB from baseline to Week 26 (n=23)

LDL-C ↓ 50%, apoB ↓ 15%, TG ↓ 45%

Cuchel M et al. Lancet 2012:dx.doi.org/10.1016/S0140-6736(12)61731-0
Summary of Alteration of Apheresis and LDL goals

- 13 (57%) of the patients were receiving apheresis at the start of the safety phase
- 6 patients had changes to their apheresis regimen
- 55% reach LDL goal less than 100; 31% < 70

<table>
<thead>
<tr>
<th>Safety Phase (Week 26 – 78)</th>
<th>Patients Reducing Frequency of Apheresis Treatments</th>
<th>Patients Stopping Apheresis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

KYNAMRO (mipomersen)

Indication

• Mipomersen is an oligonucleotide inhibitor of apolipoprotein B-100 synthesis
• An adjunct to lipid-lowering medications and diet
• Reduces LDL-C, TC, apo B, and non HDL-C in patients with homozygous familial hypercholesterolemia (HoFH)

Mipomersen: Apo B-100 as a Target

Mipomersen is a 2nd generation antisense oligonucleotide that inhibits synthesis of ApoB-100. Mimics hypobetalipoproteinemia.
ApoB Antisense Proof of Concept
ApoB Inhibition by Murine ApoB ASO Ameliorates Atherosclerotic Lesion Development in LDLr-/- Mice Fed HFC or HC Diet

Treatment

Diet

High-Cholesterol

Saline

ApoB ASO

High-Fat Cholesterol

Saline

ApoB ASO

Aortic Sinus Lesion Volume, mm³

- 80%
- 86%

(%Δ (vs saline)

www.lipid.org
Mipomersen Reduces ApoC-III in Hypercholesterolemia

- Concentrations of apoCIII in VLDL AND LDL is highly and independently predictive of CAD. ApoCIII activates pro-inflammatory molecules.

200 mg Mipomersen (SC, qw) Decreases LDL-C in HoFH Patients

LDL APHERESIS

INDICATED PATIENT POPULATION

LDL apheresis is indicated for the following patients for whom diet and maximum drug therapy has either been ineffective or not tolerated:

- LDL-C ≥ 200 mg/dL (with CHD)
- LDL-C ≥ 300 mg/dl
- Lp(a) > 50 - 60 (with CHD) new guidelines
SUMMARY OF EFFECTIVENESS

• Selective removal of LDL-C, VLDL, and Lp(a)
 – Acutely lowered Lp(a) 73-83%
 – LIPOSORBER, HELP system also lowers fibrinogen
• Little or no effect on other plasma components (Albumin, IgG) but does lower ApoE in HDL; Improves HDL function
• Time-averaged LDL-C and Lp(a) lowering of 50-58%
• Studies show significant reductions of cardiovascular event rate on therapy and stabilization or improvement of vascular lesions
EFFECT OF APHERESIS ON CORONARY HEART DISEASE IN FH

Patients
Heterozygous FH with CHD

Treatment
- LDL-Apheresis and Medication (n = 43)
 (Average LDL-Apheresis Interval = 14 days)
- Medication Only (n = 87)

Follow-Up
- 6 Year Observation of Coronary Events
 (Non-Fatal MI, PTCA, CABG, CHD Death)

Results
- 72% reduction in Coronary Events

Mabuchi et al. *American Journal of Cardiology* 1998;82:1489-1495
CHANGES IN LIPIDS: BASELINE AND TREATMENT LEVELS

<table>
<thead>
<tr>
<th></th>
<th>LDL-Apheresis (n=43) (Mean ± SD)</th>
<th>Medication (n=87) (Mean ± SD)</th>
<th>p-Value**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>On Treatment*</td>
<td></td>
</tr>
<tr>
<td>Total Cholesterol (mg/dl)</td>
<td>360 ± 67</td>
<td>305 ± 48</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>171 ± 30</td>
<td>230 ± 61</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>60 ± 27</td>
<td>72 ± 43</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>28 ± 16</td>
<td>56 ± 31</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-Cholesterol (mg/dl)</td>
<td>288 ± 67</td>
<td>234 ± 51</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>122 ± 31</td>
<td>168 ± 59</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL-Cholesterol (mg/dl)</td>
<td>40 ± 9</td>
<td>42 ± 12</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td>31 ± 15</td>
<td>36 ± 13</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-C/HDL-C</td>
<td>7.17</td>
<td>5.54</td>
<td>0.0024</td>
</tr>
<tr>
<td></td>
<td>3.88</td>
<td>4.67</td>
<td>0.76</td>
</tr>
</tbody>
</table>

* Time-averaged levels in the LDL-Apheresis group were calculated based on the equation proposed by Dr. Kroon in *Circulation 93*, pp. 1826-35 (1996)
KAPLAN-MEIER CURVES SHOWING THE PROPORTION OF PATIENTS WITHOUT ANY CORONARY EVENTS:

Proportion of Patients Without Any Event

Years

LDL-Apheresis

Medication

p = 0.0088
Cardiovascular Events Reduction in Published Trials

Primary Prevention
- **CAPS**
 - Placebo: 37%

Secondary Prevention
- **CARE**
 - Placebo: 24%

Hypercholesterolemia
- **WOS**
 - Placebo: 31%
 - Lovastatin

- **4S**
 - Placebo: 34%
 - Simvastatin

Normocholesterolemia
- **CAPS**
 - Lovastatin

Familial Hypercholesterolemia
- **Hokuriku FH-LDL-A Study**
 - Medication: 66%
 - LDL-A

H. Mabuchi, Saishin-Igaku (Japan) 2001; 56: p1134
LONG-TERM EFFECTS OF LDL-APHERESIS ON CARDIAC EVENTS

Patients
64 Patients with Familial Hypercholesterolemia
10 Homozygotes, 54 Heterozygotes

Treatment
LDL-Apheresis and Medication

Follow-Up
2.5 Year Observation of Coronary Events Including:
Cardiac Death, Coronary Revascularization, Coronary Angioplasty, Atherectomy, CABG, MI or Cerebrovascular Event

Results
44% Reduction in Event Rate During 2.5 Year Observation Period When Compared to 5 Year Medication Only Period Prior to LDL-Apheresis Treatment

CARDIOVASCULAR EVENT ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>Prior to Study (5 Years)</th>
<th>On APHERSIS® (2.5 Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Total Duration (Months)</td>
<td>3,840</td>
<td>2,012</td>
</tr>
<tr>
<td>Mean Duration/Patient (Months)</td>
<td>60</td>
<td>31</td>
</tr>
<tr>
<td>Number of Events</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>Rate/1000 Months*</td>
<td>6.3</td>
<td>3.5</td>
</tr>
</tbody>
</table>

*44% reduction in event rates
Cardiovascular effects lowering Lipoprotein(a) in 120 treated pts over 5 years with mean LDL levels of 123 mg/dl with apheresis

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre Lp(a)</td>
<td>112 mg/dl</td>
</tr>
<tr>
<td>Post Lp(a)</td>
<td>31 mg/dl</td>
</tr>
<tr>
<td>MI rate</td>
<td>decreased 97%</td>
</tr>
<tr>
<td>MACE</td>
<td>decreased 89%</td>
</tr>
</tbody>
</table>

Mean levels after weekly Lp(a) Apheresis

<table>
<thead>
<tr>
<th></th>
<th>PRE</th>
<th>POST</th>
<th>TIME-AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL</td>
<td>84</td>
<td>34</td>
<td>71</td>
</tr>
<tr>
<td>Lp(a)</td>
<td>112</td>
<td>36</td>
<td>101</td>
</tr>
</tbody>
</table>

Rosada, A e al Artificial Organs 10;111,2013
Leebmann, el al Circulation 113 2432,2013 SIMILAR FININGS AS ABOVE

www.lipid.org
Survival in Pts undergoing Lp(a) Apheresis

Rosada, A et al Artificial Organs 10:1111, 2013
Long-term effect of LDL-apheresis on post CABG patients

A multi-center trial

Proportion of patients without coronary events

Changes in LDL-C (mg/dL)

Baseline	before LDL-A	after LDL-A
261 | 177 | 60

Post-CABG patients
- Hetero-FH (n=43)
- Homo-FH (n=5)
- Non-FH (n=13)

Coronary events: acute MI, PTCA, re-CABG, sudden death

ENDOTHELIAL FUNCTION BY SINGLE LDL-APHERESIS

Patients:
Seven Patients with Hypercholesterolemia
6 Men, 1 Woman

Treatment:
LDL-Apheresis

Evaluation:
Forearm Blood Flow (FBF) Before and After Single LDL-Apheresis While Infusing Acetylcholine (ACH) or Sodium Nitroprusside (SNP)

Tamai et al. *Circulation* 1997; 95:76-82
IMPROVEMENT OF PERIPHERAL ARTERY ENDOTHELIAL FUNCTION BY SINGLE LDL-APHERESIS

Responses of Forearm Blood Flow (FBF) to Intra-Arterially Infused Acetylcholine (ACh) or Sodium Nitroprusside (SNP)

![Graph showing responses of Forearm Blood Flow (FBF) to Intra-Arterially Infused Acetylcholine (ACh) or Sodium Nitroprusside (SNP).](image)

- ACh (g/min): 0, 4, 8, 16, 24
- FBF (mL/min/100 mL): 0, 10, 20, 30, 40, 50, 60
- SNP (g/min): 0, 0.2, 0.4, 0.8, 1.2
- Before Single LDL Apheresis
- After Single LDL Apheresis

- **p < .01**
- **p: NS**
Annual Rates of Progression of Mean Maximum IMT in the Common Carotid Artery

- FH Homozygote FH Heterozygote FH Heterozygote FH Pravastatin Group Placebo Group
- LDL Apheresis Group Control Group
- FH (total: n=11) (n=2) (n=9) (n=10)
- (PLAG-II data was reported Cardiol 1995;75:455)

K. Koga Therapeutic Apheresis 5(4) 244-251 2001
Representative Example of CAG and IVUS

Baseline	Follow Up
MLD = 1.5 mm | MLD = 2.2 mm
Plaque Area = 7.8 mm² | Plaque Area = 7.0 mm²
Lumen Area = 3.3 mm² | Lumen Area = 5.3 mm²
Vessel Area = 11.1 mm² | Vessel Area = 12.3 mm²

M. Matsuzaki et al., *J Am Coll of Cardiol* 2002; 40: 220-227
Improvement of Myocardial Blood Flows (MBF) by Single LDL-Apheresis Assessed with PET

T. Sampietro, et al., Abstract from ISA 2000

<table>
<thead>
<tr>
<th>MBF (m l/m in/g)</th>
<th>Before LDL-A</th>
<th>After LDL-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenosine Stimulated</td>
<td>0.71</td>
<td>2.05</td>
</tr>
<tr>
<td>At Rest</td>
<td>0.86</td>
<td>1.31</td>
</tr>
</tbody>
</table>

(n=7) * p<0.05
CRP LEVELS IN PTS UNDERGOING APHERESIS
Otto C Athero 2004 ;174:151

Acute Changes in Serum Lipid-Parameters, RLP-C, CRP and MDA-LDL by A Single LDL-Apheresis

<table>
<thead>
<tr>
<th>Changes in Lipid-Parameters</th>
<th>mean ± SD in mmol/L</th>
<th>Before</th>
<th>After</th>
<th>Reduction (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>5.39 ± 0.81</td>
<td>2.79 ± 0.37</td>
<td>48</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>LDL-C</td>
<td>3.82 ± 1.03</td>
<td>1.63 ± 0.29</td>
<td>57</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>HDL-C</td>
<td>1.24 ± 0.29</td>
<td>1.18 ± 0.26</td>
<td>5</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>0.92 ± 0.45</td>
<td>0.23 ± 0.11</td>
<td>75</td>
<td>< 0.001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changes in RLP-C, CRP and Oxidized-LDL</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RLP-C (mg/dL)</td>
<td>6.52 ± 1.18</td>
<td>1.78 ± 0.27</td>
<td>73</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>0.79 ± 0.14</td>
<td>0.35 ± 0.04</td>
<td>56</td>
</tr>
<tr>
<td>MDA-LDL (U/L)</td>
<td>100 ± 13.6</td>
<td>38.6 ± 2.8</td>
<td>61</td>
</tr>
</tbody>
</table>

www.lipid.org
Comparison of Approved Aggressive Therapies for FH

<table>
<thead>
<tr>
<th></th>
<th>Apheresis</th>
<th>Mipomersen</th>
<th>Lomitapide</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-C and ApoB Reduction</td>
<td>~70-80% PCSK9 52% decrease</td>
<td>~25-38% (higher in Women)</td>
<td>50-60%</td>
</tr>
<tr>
<td>Lp(a) Reduction ApoC-III</td>
<td>~70-80%, ? (lowers ApoE)</td>
<td>20-3040%</td>
<td>~1-19% ?</td>
</tr>
<tr>
<td>Short Term Safety</td>
<td>Good</td>
<td>Hepatic Fat (5%)</td>
<td>Hepatic Fat (8-9%)</td>
</tr>
<tr>
<td>Compliance</td>
<td>Good</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>Long Term Safety</td>
<td>37 yrs</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Availability</td>
<td>Limited</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cost</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Cardiac Benefit</td>
<td>Yes</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Quality of Life</td>
<td>Yes</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Vascular Lesions</td>
<td>Yes</td>
<td>Animal models</td>
<td>Animal models</td>
</tr>
</tbody>
</table>

References:
- Fazio S Circ Res 2013;113:1290
- Falko JM Clin Lipidol 2011;6:523
- Previous citations and my experience
Summary and take home message of Approved Aggressive Therapies for FH

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apheresis</td>
<td>Improves CV events, symptoms, regresses atherosclerosis. Lowsers LDL-C and Lp(a) the most. Approved for all forms of FH and Lp(a) lowering.</td>
</tr>
<tr>
<td>Mipomersen</td>
<td>No CV outcomes, injection, approved for HoFH only in US, hepatic fat increases, no drug-drug interactions, large safety database; flu like symptoms, long t½ life</td>
</tr>
<tr>
<td>Lomitapide</td>
<td>No CV outcomes, oral, approved for HoFH only, hepatic fat increases, drug-drug interactions, diarrhea, supplemental vitamins and essential fatty acids required, smaller safety database, studied in apheresis pts</td>
</tr>
</tbody>
</table>