Aortic Atherosclerosis and Liver Disease in a 13-Year-Old Boy

James J. Maciejko, MS, PhD, FACC
Director, Adult and Pediatric Lipid Clinics
St. John Hospital and Medical Center
Detroit, Michigan

Associate Professor
Department of Internal Medicine,
Wayne State University School of Medicine
Initial Presentation

• An eleven year old male was referred to our lipid clinic for evaluation of a marked hyperlipidemia, hepatic transaminase elevation and hepatomegaly.

• Clinical Chemistry Assessment

TC: 336	ALT: 120	TSH: 2.66
TG: 239	AST: 78	FBS: 95
LDL-C: 272	Total Bili: 0.7	HgA1C: 4.8%
HDL-C: 16	Direct Bili: 0.1	UA: Normal
Apo B: 225	Creatinine: 0.5	

• Physical Exam:
 Height: 49 inches
 Weight: 67 pounds
 BMI: 19.6 kg/m²
 BP: 106/61 mmHg

• Significant Exam Findings:
 • PODC
 • Hepatomegaly
 • short stature
 • tuberous xanthomas
Family Medical History

- Normal paternal family Hx of either ASCVD or HLD
- Mild HTG
- Overweight

- 43
 - HLD
 - HLD ➔ Liver enzymes

- 17
 - HLD
 - HLD ➔ Liver enzymes

- 14
 - HLD
 - HLD ➔ Liver enzymes

- 11
 - HLD
 - HLD ➔ Liver enzymes

- 9
 - HLD
 - HLD ➔ Liver enzymes

- 38
 - MI @36
 - CABG @37
 - Smoker
 - Normal Lipids
 - Bariatric surgery @37

- 68
 - MI @36
 - CABG @37
 - Smoker
 - Normal Lipids
 - Thyroid Cancer (resection)

- 65
 - Normal Lipids
 - HTN
 - HLD
 - Obesity

- 45
Differential Diagnosis

• Rule out Familial Combined Hyperlipidemia and heterozygous Familial Hypercholesterolemia

• Rule out secondary cause of hyperlipidemia (hypothyroidism, diabetes mellitus, CKD, nephrotic syndrome, obesity)

• Differential diagnosis:
 – Familial Dysbetalipoproteinemia (Type III)
 – Lysosomal Acid Lipase Deficiency
Results of LAL Activity

- EDTA tubes containing whole blood were sent to Mayo Medical Laboratories for assessment of LAL activity

<table>
<thead>
<tr>
<th></th>
<th>DT</th>
<th>CT</th>
<th>BT</th>
<th>AT</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAL activity, pmol/hr/spot</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>> 21.0</td>
</tr>
</tbody>
</table>

- Interpretation: results are indicative of LAL-D.
Results of DNA Sequencing of LIPA Gene

<table>
<thead>
<tr>
<th></th>
<th>Siblings</th>
<th>Parents</th>
<th>Maternal Grandparents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DT</td>
<td>CT</td>
<td>BT</td>
</tr>
<tr>
<td>Allele 1</td>
<td>c.894G>A</td>
<td>c.894G>A</td>
<td>c.428+1g>a</td>
</tr>
<tr>
<td>Allele 2</td>
<td>c.428+1g>a</td>
<td>normal</td>
<td>normal</td>
</tr>
</tbody>
</table>

c.894G>A: common splice mutation accounting for about 60% of all LIPA mutations. It is a substitution mutation; a guanine is replaced with an adenine at last position (894) at the 3′ end of exon 8.

c.428+1g>a: A unique mutation. A splice junction mutation that substitutes a guanine with an adenine at the first nucleotide site at the 5′ end of intron 3. Considered a Wolman mutation since it results in the production of a truncated (inactive enzyme).
Treatment

• All siblings placed on a low-fat (<7% of total calories from saturated fat), balanced approach to nutrition at a daily calorie intake to support and maintain a healthy body weight.

• All siblings enrolled in a Phase III clinical trial for enzyme replacement therapy (1mg/kg, IV).

• Transitioned to commercial product (Kanuma) on 12/22/15.