Updates to the 2016 NLA Annual Summary: Secrets Revealed!
Harold Bays MD, FTOS, FACC, FACE, FNLA
Medical Director / President
L-MARC Research Center
Disclosures

• Dr. Harold Bays is owns no pharmaceutical stocks or patents. In the past 12 months, Dr. Harold Bays’ research site has received research grants from Amarin, Amgen, Ardea, Arisaph, AstraZeneca, Bristol Meyers Squibb, Catabasis, Cymabay, Eisai, Elcelyx, Eli Lilly, Esperion, Ferrer/Chiltern, Gilead, GSK, Hanmi, Hisun, Hoffman LaRoche, Home Access, Janssen, Johnson and Johnson, Kowa, Merck, Necktar, Novartis, NovoNordisk, Omthera, Orexigen, Pfizer, Pronova, Regeneron, Sanofi, Takeda, and TIMI. In the past 12 months, Dr. Harold Bays has served as a consultant/advisor for Alnylam, Akcea, Amgen, AstraZeneca, Eli Lilly, Ionis (ISIS), Merck, Novartis, Pronova, Regeneron, Sanofi and Takeda. In the past 12 months, Dr. Harold Bays has served as a speaker for Amarin, Amgen, Astra Zeneca, Eisai, Regeneron, Sanofi and Takeda.
Introduction:

What is the NLA Annual Summary?
Original Contribution

National Lipid Association Annual Summary of Clinical Lipidology 2016

Harold E. Bays, MD, FNLA*, Peter H. Jones, MD, FNLA, Carl Orringer, MD, FNLA, W. Virgil Brown, MD, FNLA, Terry A. Jacobson, MD, FNLA
2016 NLA Annual Summary Outline:

- Topics
- Reviewers
- Principles
- Adaptation to Information Age
- Practical navigation examples
- Integration of Social Media
- Planned 2017 updates
What topics are covered in the NLA Annual Summary?
Contents

I. INTRODUCTION

Updates .. S3
Principles .. S3
Appendix A and B Hyperlink Format S3
Lipid Recommendations, Lipid Guidelines, and
ASCVD Risk Calculators S3
Review Board Charge 2016 S3
Review Board Members 2016 S4
II. NLA RECOMMENDATIONS FOR PATIENT-CENTERED MANAGEMENT OF DYSLIPIDEMIA

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid evaluation and management principles</td>
<td>S5</td>
</tr>
<tr>
<td>National Lipid Association (NLA) Officers and Editors 2016</td>
<td>S6</td>
</tr>
<tr>
<td>Lipid treatment targets</td>
<td>S7</td>
</tr>
<tr>
<td>Non–high-density lipoprotein cholesterol (non–HDL-C)</td>
<td>S7</td>
</tr>
<tr>
<td>Low-density lipoprotein cholesterol (LDL-C)</td>
<td>S7</td>
</tr>
<tr>
<td>Apolipoprotein B (apo B)</td>
<td>S7</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>S7</td>
</tr>
<tr>
<td>High-density lipoprotein cholesterol (HDL-C)</td>
<td>S8</td>
</tr>
<tr>
<td>Lipid treatment goals</td>
<td>S8</td>
</tr>
<tr>
<td>Lipid screening</td>
<td>S8</td>
</tr>
<tr>
<td>Atherosclerotic cardiovascular disease (ASCVD) risk categories</td>
<td>S8</td>
</tr>
<tr>
<td>Atherosclerotic cardiovascular disease (ASCVD) risk assessment</td>
<td>S8</td>
</tr>
<tr>
<td>Very high ASCVD risk</td>
<td>S9</td>
</tr>
<tr>
<td>High ASCVD risk</td>
<td>S9</td>
</tr>
<tr>
<td>Moderate ASCVD risk</td>
<td>S9</td>
</tr>
<tr>
<td>Low ASCVD risk</td>
<td>S9</td>
</tr>
</tbody>
</table>
III. GENETICS AND CLASSIFICATION OF DYSLIPIDEMIA

Hyperlipidemias S10
Hypolipidemias S10
Clinical role of genetic testing for dyslipidemia S10
Illustrative examples of genetic dyslipidemias S10

EVALUATION AND MANAGEMENT OF FAMILIAL HYPERCHOLESTEROLEMIA S11

Genetics S11
Lipids S11
Diagnosis S11
Screening and genetic testing for familial hypercholesterolemia S11
Treatment priorities S12
Lipid-altering pharmacotherapies for FH: general principles S12
IV. SECONDARY CAUSES OF DYSLIPIDEMIA

V. ADDITIONAL LIPID PARAMETERS
- High-density lipoprotein cholesterol S12
- Low-density lipoprotein particle number S13
- Lipoprotein (a) .. S13

VI. BIOMARKERS AND “ADVANCED LIPID TESTING”
- Biomarkers as initial assessment of ASCVD risk S14
- Biomarkers for on-treatment assessment of ASCVD therapy S14
VII. NUTRITION AND PHYSICAL ACTIVITY

Medical nutrition therapy S15

Triglyceride-induced pancreatitis S15

Medical nutrition therapy for dyslipidemia S15

Adherence to nutrition therapy S16

Physical activity ... S16

Effects of physical activity on lipid levels S16

Physical activity, lipids, and weight loss S17

VIII. OBESITY, ADIPOSEPATHY, METABOLIC SYNDROME, AND DIABETES MELLITUS

Obesity as a disease S17

Adiposopathic mixed dyslipidemia S18

Adiposopathy and the metabolic syndrome S18

Adiposopathy and Non–HDL-C S18

Clinical management of obesity, adiposopathy,
metabolic syndrome, and diabetes mellitus S18

Weight management pharmacotherapy S19

Bariatric surgery .. S19
IX. LIPID PHARMACOTHERAPY
Statin Pharmacotherapy .. S19
Non-statin Pharmacotherapy S20
Statin Safety ... S20
	Statin intolerance .. S20
Statin safety: muscle ... S21
Statin safety: liver ... S21
Statin safety: cognition ... S21
Statin safety: diabetes mellitus S22
PCSK9 inhibitors (Alirocumab, Evolocumab) S22

X. LIPID-ALTERING DRUG INTERACTIONS
Pharmacokinetics and pharmacodynamics S22
Drug metabolism .. S23
Transporters ... S23
Statin drug interactions .. S23
XI. LIPOPROTEIN APHERESIS

Definition .. S24
Lipoprotein apheresis clinical considerations .. S24
 Lipoprotein apheresis systems S24
Dextran Sulfate Apo B Lipoprotein Adsorption System (Liposorber) S24
Heparin extracorporeal LDL apheresis (HELP) ... S24
Conventional plasmapheresis (plasma exchange) .. S25
Evidence for clinical benefit of lipoprotein apheresis S25
XII. DYSLIPIDEMIA IN CHILDREN AND ADOLESCENTS

ASCVD risk for children, adolescents, and young adults <21 years of age S25
Lipid screening for children, adolescents, and young adults <21 years of age S25
ASCVD risk assessment in children, adolescents, and young adults <21 years of age S26
Management of dyslipidemia in children, adolescents, and young adults <21 years of age S26
Statin therapy in children, adolescents, and young adults with dyslipidemia <21 years of age S26
Non-statin therapy for children, adolescents, and young adults with dyslipidemia <21 years of age S26
XIII. DYSLIPIDEMIA IN SELECT POPULATIONS
 Dyslipidemia and older individuals S27
 Dyslipidemia and race/ethnicity S27
 Dyslipidemia and women S29

XIV. DYSLIPIDEMIA IN PATIENTS WITH HUMAN IMMUNODEFICIENCY VIRUS (HIV) ... S30

XV. DYSLIPIDEMIA IN PATIENTS WITH INFLAMMATION S31

XVI. LIPID THERAPY ADHERENCE STRATEGIES AND TEAM-BASED COLLABORATIVE CARE S31
 Improving lipid medication adherence S31
XVII. INVESTIGATIONAL LIPID-ALTERING AGENTS IN DEVELOPMENT 2016
APPENDIX A: NATIONAL LIPID ASSOCIATION (NLA) ANNUAL SUMMARY OF CLINICAL LIPIDOLOGY 2016
Tables, Figures, Charts, and Hyperlinks S32
APPENDIX B: LIPID RECOMMENDATIONS, LIPID GUIDELINES, AND ATHEROSCLEROTIC CARDIOVASCULAR DISEASE RISK CALCULATORS
JOURNAL OF CLINICAL LIPIDOLOGY
ELECTRONIC RESOURCES
(ACCESSIBLE AT www.lipid.org) 2016 S37
E1 National Lipid Association Position
 Statements and Hyperlinks S37
E2 Other National Lipid Association documents S38
 Lipid Clinic and CMR operations
 manual/course S38
 Coding and reimbursement S38
E3 Links to audio files, websites, slide
 shows, applications, continuing medical
 education links, and patient information S38
Disclosures S38
References S38
Who were the reviewers of the 2016 NLA Annual Summary?
Clinical Lipidology: The Review Board was comprised of NLA members, NLA national officers, the Editor of the Journal of Clinical Lipidology, Guest Editor of this document, and other invited reviewers. The NLA Review Board was constituted to allow for a broad perspective and diversity regarding the science and clinical considerations in the evaluation and treatment of patients with dyslipidemia. The NLA Annual Summary of Clinical Lipidology Review Board was instructed to incorporate evidence-based medicine as well as expert opinion.

Review Board Members 2016 (The Roman Numeral after each name reflects the Table of Contents sections reviewed by the Review Board Member)

Judith A. Aberg, MD, FIDSA, FACP (Section XIV) Chief, Division of Infectious Diseases Icahn School of Medicine at Mount Sinai
Karen E. Aspy, MD, FACC, MS (Section XVI) Diplomate, American Board of Clinical Lipidology Assistant Clinical Professor of Medicine Director of the Lipid and Prevention Program for the Lifespan Cardiovascular Institute Rhode Island Cardiology Center
Christine M. Ballantyne, MD, FACP, FACC, FNLA (Section VI) Diplomate, American Board of Clinical Lipidology Professor of Medicine, Chief of the Section of Atherosclerosis and Vascular Medicine Baylor College of Medicine
Harold E. Baits, MD, FTOS, FACC, FACE, FNLA (Sections I-VII) Diplomate, American Board of Clinical Lipidology Medical Director/President Louisville Metabolic and Atherosclerosis Research Center
Dean A. Bramlet, MD, FACC, FAHA, FACP, FNLA (Section IV) Diplomate of Clinical Lipidology Assistant Consulting Professor of Medicine Duke University
Lynne T. Braun, PhD, ANP, FAAN, FACC, AACE (Section XVI) Clinical Lipid Specialist Armour Academic Center
Eliot Britton, MD, FAHA, FNLA (Section IV) Diplomate, American Board of Clinical Lipidology President, Utah Lipid Center; Director, Utah Lipid Center Utah Foundation for Biomedical Research
Alan S. Brown, MD, FACC, FAHA, FNLA (Section III) Diplomate, American Board of Clinical Lipidology Director Division of Cardiology Director Midwest Heart Disease Prevention Center
Clinical Associate Professor, Loyola Stritch School of Medicine
W. Virgil Brown, MD, FAHA, FACP, FNLA (Sections I - XVII) Diplomate, American Board of Clinical Lipidology Professor of Medicine Emeritus Emory University
Stephen Daniels, MD, PhD (Section XII) Professor and Chair Dept of Pediatrics University of Colorado School of Medicine
Prakash Deswal, MD, FACC, FAHA, FACP (Section XIII) Professor of Medicine University of California San Francisco School of Medicine
P. Barton Duell, MD (Section XI) Oregon Health & Science University
Robert Eckel, MD (Section VII) Diplomate, American Board of Clinical Lipidology Program Director, Adult General Clinical Research Center University of Colorado Anschutz Medical Campus
Sergio Fazio, MD, PhD (Section V) Diplomate, American Board of Clinical Lipidology Professor of Medicine and Physiology and Pharmacology Oregon Health and Science University
Keith C. Ferdinand, MD, FACC, FAHA, FNLA (Section XII) Professor of Clinical Medicine, Tulane University School of Medicine Tulane Heart & Vascular Institute
Anne C. Goldberg, MD, FNLA, FACP, FACC (Section III) Diplomate, American Board of Clinical Lipidology Professor of Medicine Washington Univ Med School
John R. Guyton, MD, FNLA (Section IX) Diplomate, American Board of Clinical Lipidology Associate Prof. of Med/Director, Duke Lipid Clinic Duke University Medical Center
Linda Cashin Hemphil, MD (Section XI) Diplomate, American Board of Clinical Lipidology Director, LDL Apheresis program Massachusetts General Hospital
Terry A. Jacobsen, MD, FACP, FNLA (Sections I - XVII) Diplomate, American Board of Clinical Lipidology Professor of Medicine Director, Lipid Clinic and Cardiovascular Risk Reduction Program Emory University
Peter H. Jones, MD, FACP, FNLA (Sections I - XVII) Diplomate, American Board of Clinical Lipidology Associate Professor, Baylor Coll of Medicine Dept/Med. & Other Lipid Disorders
Kenneth Kellogg, PharmD (Section X) Clinical Lipid Specialist Clinical Pharmacy Coordinator VA Western NV Healthcare System Clinical Instructor of Pharmacy and Medicine State University of New York at Buffalo
Penry Kriss-Etherton, PhD, RD, FNLA (Section VII) Clinical Lipid Specialist Distinguished Professor of Nutrition Penn State Univ: Nutrition Dept.
Ralph Laforge, MSc, CLS, FNLA (Section VII) Clinical Lipid Specialist Cardiometabolic Disease Management and Prevention Consultant Durham NC
Katherine P. Liao, MD (Section XVI) Assistant Professor Harvard Medical School
Kevin C. Maki, PhD, CLS, FNLA (Section VII) Clinical Lipid Specialist Provost, Clinical Research and Consulting
Patrick M. Morris, MD, FNLA (Section XI) Professor of Medicine and the Director of Clinical Pharmacology/Atherosclerosis & LDL Apheresis Unit of Kaiser Permanente
Pamela B. Morris, MD, FACC, FACP, FACPM, FAHA, FNLA (Section XII) Diplomate, American Board of Clinical Lipidology Director, Preventive Cardiology Co-director, Women’s Heart Care Medical Univ of S Carolina
Carl E. Orringer, MD, FACC, FNLA (Sections I - XVI) Diplomate, American Board of Clinical Lipidology Associate Professor of Medicine University of Miami Leonard M. Miller School of Medicine
Robert S. Rosenson, MD (Section V) Professor of Medicine, Director, Atherosclerotic Diseases Mount Sinai Medical Center
Joyce L. Ross, MSN, CRNP, FNLA (Section XVI) Clinical Lipid Specialist, West Chester, PA
Joseph J. Sussen, PharmD, FNLA (Section X) Clinical Lipid Specialist Professor, Departments of Clinical Pharmacy and Family Medicine, University of Colorado
Greta Sikand, MA, RDN, FAND, CDE, CLS, FNLA (Section VII) Clinical Lipid Specialist Associate Clinical Professor of Medicine, Cardiology University of California Irvine School of Medicine Irvine CA
James A. Underberg, MD, MS, FNLA (Section X) Diplomate, American Board of Clinical Lipidology Clinical Assistant Professor of Medicine, NYU Medical School
Krishnamurthi Vuyyurthy, MD, MS, FACP, FACC, FACP, FNLA (Section VIII) Diplomate, American Board of Clinical Lipidology Vice President, Scottsdale Cardiovascular Center Clinical Professor of Medicine, University of Arizona
Eric C. Westman, MD, MHS (Section VIII) Director, Lifestyle Medicine Clinic Duke University Health System
Robert A. Wild, MD, MPP, PhD, FNLA (Section XIII) Diplomate, American Board of Clinical Lipidology Professor Reproductive Endocrinology, Gynecology, Endocrinology/Medicine OK Univ, Hlth Sci Ctr
Kaye-Elzenein Willard, MD (Section XVI) Diplomate, American Board of Clinical Lipidology Medical Director, Chronic Disease Management, Racine WI
Donnie P. Wilson, MD, FNLA (Section XIII) Diplomate, American Board of Clinical Lipidology Director, Patikan Lipid Clinic, Cook Children’s Medical Center, Fort Worth, Texas
Cook Children’s Endocrine Clinic

II. NLA Recommendations for Patient-Centered Management of Dyslipidemia

Lipid evaluation and management principles

- Basic principles in the evaluation and management of dyslipidemia for the purpose of reducing atherosclerotic cardiovascular disease (ASCVD) risk include:
 - An elevated level of triglyceride cholesterol is reflective of an increase in circulating apolipoprotein B (apo B) containing lipoproteins, and is most often clinically assessed by measuring non high density lipoprotein cholesterol.

www.lipid.org
What are the principles of the NLA Annual Summary?
Principles

The 2016 NLA Annual Summary of Clinical Lipidology was founded on evidence-based medicine and is generally consistent with established national and international lipid guidelines. Where definitive evidence was lacking, the best available evidence was applied. This summary should not be interpreted as rules or directives with regard to the most appropriate care of any single patient with dyslipidemia, because no set of recommendations or guidelines can have 100% applicability to an individual patient. Thus, evaluation and treatment decisions should be based on patient-centered, individual circumstances. As such, this document should be used in conjunction with, and not a replacement for the preferences of patients with dyslipidemia and the judgment of their treating clinicians.
How has the NLA Annual Summary adapted to the Information Age?
Appendix A and B Table and Figure Hyperlink Format

Highlighted hyperlinks within the document lead to Appendix A and B. When viewed online, hyperlinks in Appendix A and B, as well as hyperlinks in the E link section lead to applicable publications, tables, figures, and charts. In an age of wide-scale availability of Internet access, computers, smartphones, and tablets, the intent is to provide a central directory of information applicable for both medical science, as well as for the day-to-day management of patients with dyslipidemia. Providing electronic links to tables, figures, charts, and publications allows for better maintaining a summary document format, easier access to more in-depth information, and greater comprehensiveness of material important in the evaluation and management of patients with dyslipidemia.
What are some practical examples of how the NLA Annual Summary can be navigated?
“How do I find a quick summary of the latest information on Familial Hypercholesterolemia?”
Contents

EVALUATION AND MANAGEMENT OF FAMILIAL HYPERCHOLESTEROLEMIA . . . S11
 Genetics ... S11
 Lipids ... S11
 Diagnosis .. S11
 Screening and genetic testing for familial hypercholesterolemia . . . S11
 Treatment priorities .. S12
 Lipid-altering pharmacotherapies for FH: general principles S12
PCSK9 activity via gain-of-function genetic variant, circulating LDL-C levels are increased.

• Example #4: Betasitostatemia is a rare inherited plant sterol storage disease that can phenotypically mimic FH.

 □ Clinical findings of tendon xanthomas and increased ASCVD risk may be out of proportion to the patient’s lipid profile, which may demonstrate modest to no increase in LDL-C levels.

 □ Betasitostatemia is an autosomal recessive condition that occurs as a result of mutations in adenosine triphosphate binding cassette transporters (ABC) G5 or ABCG5, which are sterol transporters that facilitate plant sterols and cholesterol efflux from intestinal and hepatic cells into the intestinal and biliary lumen.

□ A lack of gastrointestinal plant sterol secretion back into the gastrointestinal lumen increases circulating physiosterol levels.

□ The diagnosis of betasitostatemia is typically made by measuring plant sterol levels, not by genotyping of ABCG5/G8.

□ Betasitostatemia is an example of a genetic condition that requires an accurate diagnosis because ezetimibe is the only lipid-altering drug with a specific Food and Drug Administration (FDA)-indicated use for treating patients with betasitostatemia.

□ Ezetimibe impairs intestinal plant sterol (and cholesterol) absorption and therefore reduces circulating plant sterol levels.

□ Examples of other genetic abnormalities related to dyslipidemia include disorders of lipoprotein (a), apolipoprotein E, apo CII, Apo-AV, and ABC transporter (ie, Tangier disease). Future genotyping may help identify mutations in these lipid-related parameters, and may also help help identify patients most likely to have adverse experiences with certain medications, such as myopathy to statins.

□ Some genetic contributors to dyslipidemia involve a combination of gene variants. For example, many genetic causes of moderate hypertriglyceridemia are likely polygenic, in nature, requiring a secondary factor for expression.13

EVALUATION AND MANAGEMENT OF FAMILIAL HYPERCHOLESTEROLEMIA14-17

Genetics

• The FHs represent a group of genetic defects that result in an extreme elevation of LDL-C levels starting in utero, and increased risk of premature atherosclerotic CHD, as much as 20-fold in untreated FH patients.

• Although homozygous FH occurs in approximately 1 out of every 250,000 to 1 million individuals, heterozygous FH is among the most common congenital metabolic disorders, occurring in approximately 1,200 to 1,500 individuals, with an increased rate (1:100) among those of Lebanese, French Canadian, Ashkenazi Jewish, and several South African backgrounds resulting from founder effects.

• FH is most commonly (> 90%) an autosomal dominant lack of LDL receptor activity, usually from LDL receptor mutation (with more than 1200 described mutations).

• Less commonly, FH may be due to an apo B-100 gene mutation (eg, Arg3500Gln), which accounts for about 5% of genetically identified FH cases, or PCSK9 gain-of-function mutations (overexpression), leading to increased degradation of the LDL receptor and accounting for about 1% of cases of FH.20

□ Other potential mechanisms may contribute to the phenotypic presentation of FH.

□ Elevation of serum cholesterol and triglycerides can be expected in patients with FH.

□ Patients with homozygous FH (the same genetic defect inherited from each parent) or compound heterozygous FH (different genetic defects inherited from both parents) typically have LDL-C levels >500 mg/dL.

□ Patients with heterozygous FH (single genetic defect inherited from either parent) typically have LDL-C levels >160 mg/dL in pediatric patients and >190 mg/dL in adult patients.

□ Patients with FH may occasionally have elevated triglyceride levels; thus, high triglyceride levels do not exclude the diagnosis of FH.

Diagnosis13,20-22

• Several groups have offered diagnostic criteria for FH, including Simon Broome, Dutch Lipid Clinic Network, and MedPed: Dutch Lipid Clinic criteria apply to adults; Simon Broome and MedPed can also apply to children.

□ Diagnostic criteria for FH depend upon measured findings of very high LDL-C levels as well as family history of marked elevated LDL-C levels and early-onset ASCVD. Given this clinical presentation, tendon xanthomas are pathognomonic for FH, with genetic testing often, but not always, confirmatory.

Screening and genetic testing for familial hypercholesterolemia13,14

• Cascade (family) screening for FH is recommended in individuals and families with very high LDL-C levels.

• Genetic testing is generally not required for diagnosis or clinical management of FH; however, a characteristic clinical presentation, coupled with DNA testing by a reliable testing laboratory that confirms an applicable mutation in an individual, can provide unequivocal diagnosis.

□ The possibility of FH is not excluded by negative DNA testing because genetic testing fails to reveal a specified mutation in approximately 30% of clinically defined FH patients.

□ Cascade family screening for FH is recommended in individuals and families with very high LDL-C levels.

□ Genetic testing is generally not required for diagnosis or clinical management of FH; however, a characteristic clinical presentation, coupled with DNA testing by a reliable testing laboratory that confirms an applicable mutation in an individual, can provide unequivocal diagnosis.

□ The possibility of FH is not excluded by negative DNA testing because genetic testing fails to reveal a specified mutation in approximately 30% of clinically defined FH patients.

Treatment priorities

• Maximize reduction in other ASCVD risk factors.

□ Maximize nutrition and physical activity interventions.

□ Lower LDL-C levels by at least 50% or more, to <100 mg/dL, if feasible.

□ Cascade testing of first-degree relatives should be offered to all individuals with FH.

□ The 10-year CHD risk in the FH patient is not adequately predicted by any conventional risk assessment tools; assessment of 10-year risk is not recommended.

Lipid-altering pharmacotherapies for FH: general principles

• High-intensity statins are the pharmacotherapy of first choice for patients with FH, but should be avoided in women who are breastfeeding, who may potentially become pregnant, or who are pregnant because statins have not been adequately studied in pregnant women.

□ Other lipid-altering agents that may be useful in combination with statins, or in combination with each other for patients who cannot take statins include ezetimibe, bile acid sequestrants, PCSK9 inhibitors, and niacin.

□ In addition to high-intensity statins, other lipid-altering pharmacotherapies have an approved indication to treat patients with homozygous FH.

□ Mipomersen is an antisense oligonucleotide that targets the messenger RNA for apo B.

□ Mipomersen is an antisense inhibitor of apo B synthesis that when administered in combination with maximum tolerated doses of lipid-lowering therapy can reduce LDL-C levels by an additional 25% in homozygous FH patients.

□ Mipomersen is an inactivating product that may cause injection site reactions.

□ Mipomersen may increase hepatic fat.

□ Mipomersen may increase liver transaminase levels; however, clinical trial data have not reported permanent liver failure.

□ Lomitapide is a microsomal triglyceride transfer protein inhibitor, which impairs VLDL secretion and reduces circulating apo B-containing lipoproteins.

□ Lomitapide may reduce LDL-C levels by up to 50% in patients with homozygous FH on maximum tolerated lipid-lowering therapy and LDL apheresis.

□ Common adverse experiences with lomitapide include fat malabsorption, diarrhea, increased liver fat, and elevated liver transaminases.

□ Substantially due to the alterations in liver transaminases and increase in hepatic fat, mipomersen and lomitapide are available through Risk Evaluation and Mitigation Strategy programs.

Evolocumab is a human monoclonal PCSK9 inhibitor that among its indications is treatment for homozygous familial hypercholesterolemia. Compared with placebo in patients with homozygous hypercholesterolemia, evolocumab significantly reduced LDL cholesterol at 12 weeks by 31%, suggesting residual LDL receptor activity in a subset of patients with homozygous FH.37

□ Other treatment options for lowering cholesterol in patients with FH include LDL apheresis, and in the most severe and resistant cases, portacaval anastomosis and liver transplantation.

IV. SECONDARY CAUSES OF DYSLIPIDEMIA1,24

• Beyond genetic considerations, dyslipidemia can also be due to secondary causes.

□ A “two-hit phenomenon”24 is commonly encountered in the clinical evaluation and management of patients with primary hyperlipidemia (eg, the relatively common familial combined hyperlipidemia or familial hypertriacylglycerolemia; the more rare lipoprotein lipase deficiency; apo C-III deficiency, familial dysbetalipoproteinemia).

□ “First hit” = Genetic predisposition.

□ “Second hit” = Exacerbation by secondary factors that worsen lipid levels, often resulting in profound hyperlipidemia.

□ This “second hit” can be the result of underlying disorders of metabolism or disease (eg, untreated hypothyroidism, inadequately controlled diabetes mellitus or from drugs that unproportionally alter lipid metabolism.

□ Secondary causes of hyperlipidemia are listed in the Appendix, and many elevate triglycerides either alone, or elevate both triglycerides and LDL cholesterol.

□ Secondary causes of hypertriacylglycerolemia are often associated with decreases in HDL-C levels. However, alcohol consumption, oral estrogen, and bile acid sequestrants are examples of agents that can increase both triglyceride and HDL-C levels.

V. ADDITIONAL LIPID PARAMETERS25-31

High-density lipoprotein cholesterol

□ Epidemiologically, HDL-C has an inverse relationship with ASCVD risk, irrespective of sex, race, or ethnicity.

□ Increased HDL-C levels are often associated with decreased risk of ASCVD.

□ Decreased HDL-C levels are often associated with increased ASCVD risk.

□ HDL-C may not be causally related to atherosclerosis and cardiovascular events; however, it is a biomarker of ASCVD risk.

□ HDL particles include many proteins and lipids that influence the function of HDL, and may provide atheroprotection via favorable effects upon atherosclerotic
The appearance of the serum can provide clues to diagnosis of genetic dyslipidemia.
APPENDIX A: National Lipid Association (NLA) Annual Summary of Clinical Lipidology 2016: Tables, Figures, Charts, and Hyperlinks

<table>
<thead>
<tr>
<th>Section of this NLA Annual Summary</th>
<th>Title and links to applicable tables/figures/charts</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLA Executive Summary</td>
<td>Table 1. Classifications of cholesterol and triglyceride Levels in mg/dL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 2. Treatment goals for non-HDL-C, LDL-C, and Apo B in mg/dL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 3. Criteria for ASCVD risk assessment, treatment goals for atherogenic cholesterol, and levels at which to consider drug therapy</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 7. Major risk factors for ASCVD</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 8. Criteria for classification of ASCVD</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 9. High- or very high-risk patient groups</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 10. Sequential steps in ASCVD risk assessment</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 11. Risk indicators (other than major ASCVD risk factors) that might be considered for risk refinement</td>
<td>1</td>
</tr>
<tr>
<td>Genetics and Classification of Dyslipidemia</td>
<td>Figure 1: Clinical manifestations of primary hypertriglyceridemia (eruptive cutaneous xanthomas, lipemic plasma, lipemia retinalis, tuberous xanthomas, and palmar crease xanthomas)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Table 1. Genetic classification of dyslipidemia</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Table 2. Genetic causes of hypolipidemias</td>
<td>*</td>
</tr>
<tr>
<td>Evaluation and Management of Familial Hypercholesterolemia</td>
<td>Table 3: Simon Broome diagnostic criteria for familial hypercholesterolemia</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Table 4. Dutch Lipid Clinic Network diagnostic criteria for familial hypercholesterolemia</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Table 5. MEDPED diagnostic criteria for heterozygous familial hypercholesterolemia</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Table Summary Recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia</td>
<td>16</td>
</tr>
</tbody>
</table>
Hypertriglyceridemia: its etiology, effects and treatment

George Yuan, Khalid Z. Al-Shali, Robert A. Hegele

Fig. 1. Clinical manifestations of primary hypertriglyceridemia. A: Lipidic cutaneous xanthomas (thick on the patient's knee) are filled with foam cells that appear as yellow or orange papules or plaques. Most often associated with markedly elevated plasma triglyceride concentrations. In patients with familial chylomicronemia (hyperchylomiconemia type III), they usually occur on the skin of the trunk, buttocks, or extremities. B: Lipemic plasma. Whole blood has been allowed to stand at 4°C overnight. The sample on the left comes from a patient whose fasting total cholesterol concentration was 142 mg/dL and triglyceride concentration was 418 mg/dL. The sample on the right comes from a normolipemic subject. C: Lipemia retinalis. A milky appearance of the retinal vessels and pink retina can be seen when plasma triglyceride concentration exceeds 35 mg/dL. D: Tuberous xanthomas, filled with foam cells, appear as reddish or orange, often shiny nodules, up to 3 cm in diameter. They are usually inoperable and are not removable. In patients with familial dysbetalipoproteinemia (hyperbetalipoproteinemia type V), they usually appear on extensor surfaces, these are on a patient's elbows. E: Palmar crease xanthomas are filled with foam cells and appear as yellowish deposits within palmar creases. These skin lesions are pathognomonic for familial dysbetalipoproteinemia (hyperbetalipoproteinemia type V).
Diagnosis18,20–22

- Several groups have offered diagnostic criteria for FH, including Simon Broome, Dutch Lipid Clinic Network, and MedPed: Dutch Lipid Clinic criteria apply to adults; Simon Broome and MEDPED can also apply to children.
| Evaluation and Management of Familial Hypercholesterolemia | Table 3: Simon Broome diagnostic criteria for familial hypercholesterolemia | * |
| | Table 4. Dutch Lipid Clinic Network diagnostic criteria for familial hypercholesterolemia | * |
| | Table 5. MEDPED diagnostic criteria for heterozygous familial hypercholesterolemia | * |
| | Table Summary Recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia | 16 |
| Tabla 1: Simon Brown diagnostic criteria for Familial Hypercholesterolemia*

Definite Familial Hypercholesterolemia:

Required laboratory = high cholesterol levels:

- Adult = Total cholesterol levels > 290 mg/dL (7.5 mmol/L) or LDL-C > 150 mg/dL (4.0 mmol/L)
- Child less than 16 years of age = Total cholesterol levels > 260 mg/dL (6.7 mmol/L) or LDL-C > 155 mg/dL (4.0 mmol/L)

Plus at least one of the two:

1. Plus physical finding - tendon xanthomas, or tendon xanthomas in first or second degree relative
2. DNA-based evidence of an LDL-receptor mutation, familial defective apo B:100, or a PCSK9 mutation.

Possible Familial Hypercholesterolemia

Laboratory = high cholesterol levels:

- Adult = Total cholesterol levels > 290 mg/dL (7.5 mmol/L) or LDL-C > 150 mg/dL (4.0 mmol/L)
- Child less than 16 years of age = Total cholesterol levels > 260 mg/dL (6.7 mmol/L) or LDL-C > 155 mg/dL (4.0 mmol/L)

Plus at least one of the two:

1. Family history of at least one of the following.
 1. Family history of myocardial infarction at:
 1. Age 60 years or younger in first degree relative
 2. Age 50 years or younger in second-degree relative
2. Family history of elevated total cholesterol
 1. Greater than 290 mg/dL (7.5 mmol/L) in adult first- or second-degree relative
 2. Greater than 260 mg/dL (6.7 mmol/L) in child, brother or sister aged younger than 16 years.

www.lipid.org
“How do I find a quick summary of the latest on lipid-altering drugs in development?”
XVII. INVESTIGATIONAL LIPID-ALTERING AGENTS IN DEVELOPMENT 2016 *(Table 1)*

<table>
<thead>
<tr>
<th>Class of agent and mechanism of action</th>
<th>Name</th>
<th>Manufacturer</th>
<th>Sample references or Clinical Trials.gov Identifiers</th>
<th>Sentinel, reported safety/ tolerability findings</th>
<th>Sentinel lipid effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors</td>
<td>Bococizumab</td>
<td>Pfizer (RN316)</td>
<td>195</td>
<td>Rare injection site reactions, with most cases being mild</td>
<td>>50% reduction in LDL-C and non-HDL-C levels</td>
</tr>
<tr>
<td></td>
<td>ALN-PCS</td>
<td>Alnylam and the Medicines Company</td>
<td>180,196</td>
<td>Mild localized injection site reactions</td>
<td>Mean LDL cholesterol reduction 64%, with some degree of LDL cholesterol lowering maintained over 140 days, potentially supportive of a once-quarterly and possibly biannual subcutaneous administration</td>
</tr>
</tbody>
</table>

(continued on next page)
“How do I quickly find hyperlinks to prescribing information for lipid-altering drugs?”
APPENDIX A (continued)

<table>
<thead>
<tr>
<th>Section of this NLA Annual Summary</th>
<th>Title and links to applicable tables/figures/charts</th>
<th>Refer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fluvastatin: https://www.pharma.us.novartis.com/product/pi/pdf/Lescol.pdf</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Lovastatin: http://www.merck.com/product/usa/pi_circulars/m/mevacor/mevacor_pi.pdf</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Pravastatin: http://packageinserts.bms.com/pi/pi_pravachol.pdf</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Rosuvastatin: http://www1.astrazeneca-us.com/pi/crestor.pdf</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Omega-3-acid ethyl esters (EPA and DHA): https://www.gsksource.com/gskpnm/htdocs/documents/LOVAZA-PI-PIL.PDF</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Icosapent ethyl (EPA only): http://www.vascepa.com/full-prescribing-information.pdf</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Omega-3-carboxylic acids (EPA and DHA free fatty acid formulation): http://www1.astrazeneca-us.com/pi/epanova.pdf</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Alirocumab: http://products.sanofi.us/praluent/praluent.pdf</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Evolocumab: http://pi.amgen.com/united_states/repatha/repatha_pi_hcp_english.pdf</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Fenofibric acid: http://www.rxabbvie.com/pdf/trilipix_pi.pdf</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Lomitapide: http://www.juxtapidremssprogram.com/_pdf/012187_JuxtapidPI_8.5x11_FIN.PDF</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Mipomersen: http://www.kynamro.com/~media/Kynamro/Files/KYNAMRO_PI.pdf</td>
<td>NA</td>
</tr>
</tbody>
</table>
“How do I quickly find hyperlinks to Tables and Charts of Parts 1 & 2 of the NLA Recommendations?”
APPENDIX A: National Lipid Association (NLA) Annual Summary of Clinical Lipidology 2016: Tables, Figures, Charts, and Hyperlinks

<table>
<thead>
<tr>
<th>Section of this NLA Annual Summary</th>
<th>Title and links to applicable tables/figures/charts</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLA Executive Summary</td>
<td>Table 1. Classifications of cholesterol and triglyceride Levels in mg/dL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 2. Treatment goals for non-HDL-C, LDL-C, and Apo B in mg/dL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 3. Criteria for ASCVD risk assessment, treatment goals for atherogenic cholesterol, and levels at which to consider drug therapy</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 7. Major risk factors for ASCVD</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 8. Criteria for classification of ASCVD</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 9. High- or very high-risk patient groups</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 10. Sequential steps in ASCVD risk assessment</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Table 11. Risk indicators (other than major ASCVD risk factors) that might be considered for risk refinement</td>
<td>1</td>
</tr>
<tr>
<td>Section of this NLA Annual Summary</td>
<td>Title and links to applicable tables/figures/charts</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Statin drug interactions</td>
<td>Table 13. Drug metabolism basics</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Table 14. Phases of drug interaction</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Table 15. Transporter classes</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Table 16. Pharmacokinetic and pharmacodynamics properties of statins</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Table 1. Transporters and enzymes involved in statin metabolism (page S32)</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Table 2. Membrane transporters (S33)</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Figure 3. A proposed ranking of significance with respect to area under the curve changes and drug-drug interaction possibilities (page S35)</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Table 12. Comparison of drug-drug interactions across all statins (page S41)</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Table 13. Dose limits of various statins with respect to various interacting medications (page S43)</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Table 14. Statin/Rebate combination therapy pharmacokinetic interactions (page S43)</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Table 14. Liprotein Apheresis</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Table 7. Acceptable, borderline-high, and high plasma lipoprotein lipids and apolipoprotein concentrations for children and adolescents (page S29)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Table 9. International Diabetes Federation’s definition of the at risk group and metabolic syndrome in children and adolescents (page S30)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Chart 3. Recommendations for the evaluation and management of dyslipidemia in children (S34)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Chart 4. Recommendations for women’s lipid health (page S44)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Chart 5. Lipid recommendations for women: pregnancy and menopause (page S49)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Table 14. Atherosclerotic cardiovascular disease risk reduction with statin therapy in older adults from secondary prevention statin trials (page S52)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Chart 6. Lipid recommendations for older patients (page S56)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Chart 7. Lipid recommendations for Hispanics/Latinos (page S60)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Table 17. Prevalence of atherosclerotic cardiovascular disease and risk factors according to race/ethnicity (page S61)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Table 18. Mean lipid levels for adults aged ≥ 20 years according to race (page S63)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Chart 8. Lipid recommendations for African Americans (page S66)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Table 20. Waist circumference thresholds for abdominal obesity by various international organizations, based upon race and geographic location (page S69)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Chart 9. Lipid recommendations for South Asians (page S72)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Chart 10. Lipid recommendations for American Indians/Alaska Natives (page S73)</td>
<td>48</td>
</tr>
<tr>
<td>Lipoprotein-apheresis</td>
<td>Table 22. Risk scores and algorithms for assessing cardiovascular disease risk in the general population and among patients infected with human immunodeficiency virus (page S76)</td>
<td>48</td>
</tr>
<tr>
<td>Dyslipidemia in select populations</td>
<td>Table 23. Interactions between antiretroviral therapy and statins (page S81)</td>
<td>48</td>
</tr>
<tr>
<td>Dyslipidemia in patients with immunodeficiency virus</td>
<td>Chart 11. Lipid recommendations for human immunodeficiency virus (page S82)</td>
<td>48</td>
</tr>
<tr>
<td>Dyslipidemia in patients with inflammation</td>
<td>Chart 12. Lipid recommendations for patients with rheumatoid arthritis (page S84)</td>
<td>48</td>
</tr>
<tr>
<td>Adherence strategies and team-based collaborative care</td>
<td>Chart 14. Lipid Recommendations for patient adherence (page S97)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Chart 15. Lipid Recommendations for team-based collaborative care (page S100)</td>
<td>48</td>
</tr>
</tbody>
</table>

NA, not applicable

*Online NLA Resource Center
“How do I quickly find hyperlinks to Worldwide Lipid Guidelines and Recommendations?”
Lipid Guidelines, Recommendations, and Position Statements

- National lipid association recommendations for patient-centered management of dyslipidemia: Part 1, full report.
- National lipid association recommendations for patient-centered management of dyslipidemia: Part 2
- Key Aspects of the NLA Recommendations for the Patient-Centered Management of Dyslipidemia
- A lipologist perspective of global lipid guidelines and recommendations, part 2: Lipid treatment goals
- An International Atherosclerosis Society position paper: global recommendations for the management of dyslipidemia: Executive Summary.
- 2012 Update of the Canadian Cardiovascular Society Guidelines for the Diagnosis and Treatment of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult
- ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS)
- National Cholesterol Education Program Adult Treatment Panel III Guidelines: Implications of recent clinical trials
“How do I find hyperlinks to online ASCVD Risk Calculators?”
Atherosclerotic Cardiovascular Disease Risk Assessment Tools and Calculators

- American College of Cardiology/American Heart Association atherosclerotic cardiovascular disease Risk Estimator
- United States National Heart, Lung, and Blood Institute Framingham Risk Score
- Reynolds Risk Score
- QRISK Risk Calculator
- Lloyd-Jones Framingham Algorithm
- Systemic Coronary Risk Estimation (SCORE)
- Prospective Cardiovascular Munster Study (PROCAM) Risk Scores (Quick Check and Health Check)
- A lipidologist perspective on global lipid guidelines and recommendations, Part 1: Lipid treatment targets and risk assessment
ASCVD Risk Estimator*

All fields are required to compute ASCVD risk.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age</th>
<th>Race</th>
<th>Systolic Blood Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20-79</td>
<td>White</td>
<td>90-200</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td>African American</td>
<td></td>
</tr>
<tr>
<td>HDL - Cholesterol (mg/dL)</td>
<td>Total Cholesterol (mg/dL)</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>20-100</td>
<td>130-320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>Treatment for Hypertension</td>
<td>Smoker</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

*Intended for use if there is not ASCVD and the LDL cholesterol is <190 mg/dL.

**Optimal risk factors include: Total cholesterol of 170 mg/dL, HDL cholesterol of 50 mg/dL, Systolic BP of 110 mm Hg, Not taking medications for hypertension, Not a diabetic, Not a smoker.
“How do I find hyperlinks to NLA Position Statements and Recommendations?”
E1 National Lipid Association Position Statements and Hyperlinks

- 2015 National Lipid Association recommendations for patient-centered management of dyslipidemia: Part 2: (Lifestyle therapies, groups with special considerations, older patients, patients with human immune deficiency, patients with inflammation, patients with residual risk, strategies to assist with adherence, team-based collaborative care).
- 2015 Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT
- 2014 Statin Safety Update.
- 2013 Obesity, adiposity, and dyslipidemia: A consensus statement from the NLA.
- 2011 Familial Hypercholesterolemia: Screening, Diagnosis and Management of Pediatric and Adult Patients.
- 2008 National Lipid Association Statement Regarding Reporting of Non-HDL on Standard Laboratory Reports.
“But does the NLA Annual Summary really take full advantage of the Information Age? What about social media?”
E2 Other National Lipid Association documents

Lipid Clinic and CMR operations manual/course

(https://www.lipid.org/education/courses/coding)

Coding and reimbursement

(https://www.lipid.org/practicetools/reimbursement)

E3 Links to:

Podcasts: https://www.lipid.org/aggregator/audio

Webcasts: https://www.lipid.org/aggregator/webcasts

Slide shows: https://www.lipid.org/aggregator/slideshows

Websites: https://www.lipid.org/aggregator/websites

Applications: https://www.lipid.org/aggregator/application

CME: https://www.lipid.org/aggregator/CME

Patient information: https://www.lipid.org/aggregator/patients
2016 NLA Annual Summary:

- Topics
- Reviewers
- Principles
- Adaptation to Information Age
- Practical navigation examples
- Integration of Social Media
- Planned 2017 updates
“But what have you done for me lately . . . what updates are planned for 2017?”
Accepted Manuscript

2016 ACC Expert Consensus Decision Pathway on the Role of Non-Statin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk

Donald M. Lloyd-Jones, MD, FACC, Chair, Writing Committee, Pamela B. Morris, MD, FACC, Vice Chair, Writing Committee, Christie M. Ballantyne, MD, FACC, Writing Committee, Kim K. Bircher, PharmD, AACC, Writing Committee, David D. Daly, Jr., MD, Writing Committee, Sondra M. DePalma, MHS, PA-C, CLS AACC, Writing Committee, Margo B. Minissian, PhD, ACNP, AACC, Writing Committee, Carl E. Orringer, MD, FACC, FNLA, Writing Committee, Sidney C. Smith, Jr., MD, FACC, Writing Committee

PII: S0735-1097(16)32398-1
DOI: 10.1016/j.jacc.2016.03.519
Reference: JAC 22437

To appear in: Journal of the American College of Cardiology
Updates to the 2016 NLA Annual Summary: Secrets Revealed!