Lipoprotein(a) as a clinical decision-aid tool
Weiss MC, Gianos E, Berger JS, Underberg J, Weintraub H.
New York University School of Medicine, New York, NY

Background

- Lipoprotein(a) (Lp(a)) is an inherited independent risk factor (RF) for cardiovascular disease.
- Its clinical role remains limited, however, given the lack of standardized prospective assays, limited therapeutic agents to lower Lp(a), and lack of outcomes trials for treatment targeting it.

Objective

- We hypothesize that knowledge of an elevated Lp(a) will intensify treatment targets for traditional cardiovascular RFs and increase cascade screening.

Methods

- This is an observational cohort of consecutive patients (n=95) referred for elective percutaneous coronary intervention (PCI) at a single academic hospital seen by the Preventive Cardiology service. Eligibility for Lp(a) screening was adapted as a hybrid of current National Lipid Association recommendations and European Atherosclerosis Society guidelines and required one of the following:
 1. premature coronary disease (M<55, F<65)
 2. family history of premature CAD
 3. requirement for PCI despite:
 a. well-controlled traditional RFs (BP<140/90, LDL<100, A1c<7%; non-smoker)
 b. at least moderate intensity statin (simva 40, atorva 40-80, or rosuva 20-40mg daily).

Results

- Of 95 patients (mean age 57±8, 64% white, 82% male), 57 (60%) were on moderate or high intensity statin therapy.
- Mean LDL-C and non-HDL-C were 87±39 and 111±43mg/dL, respectively.
- Lp(a) was abnormal by reference lab standards (≥30mg/dL) in 46 cases (48%).
- Among those with LDL-C ≤70 and non-HDL-C ≤100mg/dL, Lp(a) was elevated in 14 of 32 subjects (44%), 12/14 (86%) of which were significantly elevated (≥50mg/dL).
- In the known follow-up of subjects with elevated Lp(a) ≥30mg/dL, 16/28 (57%) received intensification of therapy (e.g. increased statin, addition of ezetimibe or PCSK9 inhibitor). Reference values were adapted from a large-scale prescriptive data. [Arch Intern Med. 2008]

Conclusions

- Assessment of the clinical utility of Lp(a) in our cohort of patients shows promise for Lp(a) use above and beyond traditional risk factors for guidance in medical therapy.
- Our findings suggest:
 1. a 48% prevalence of elevated Lp(a) in this high-risk population
 2. that while 34% of patients' LDL and non-HDL were ≤70 and ≤100mg/dL respectively, 44% of those same patients had elevated Lp(a), suggesting residual risk
 3. that knowledge of an elevated Lp(a) may provide information beyond LDL and non-HDL to aid decision-making in lipid-lowering treatment intensification, as was seen in 57% of patients in this series.
- Long-term studies demonstrating that a reduction in Lp(a) improves cardiovascular outcomes are needed. Until then we suggest adoption of Lp(a) screening as a decision-aid tool in intensification of therapy in high-risk patients and as a reason to screen family members when positive.

References

- Bernet, Lp(a) levels and risk of future coronary heart disease: large-scale prospective data. [Arch Intern Med. 2008]
- Eraso, Lp(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. [JAMA 2009]
- Kastelein, Genetically elevated Lp(a) and increased risk of myocardial infarction. [JAMA 2009]
- Davidson, Clinical utility of inflammatory markers and advanced lipoprotein testing: Advice from an expert panel of lipid specialists. [J of Clin Lipidol. 2011; 5(5) 338-367]
- Desai, AMG145, a Monoclonal Antibody Against Proprotein Convertase Subtilisin Kexin Type 9, Significantly Reduces Lipoprotein(a) in Hypercholesterolemic Patients Receiving Statin Therapy: An Analysis From the LDL-C Assessment With Proprotein Convertase Subtilisin Kexin Type 9 Monoclonal Antibody Inhibition Combined With Statin Therapy (LAPLACE)-Thrombolysis in Myocardial Infarction (TIMI) 57 Trial. Circ. 2013; 129:962-9.
- Tsimikas, Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. [Lancet. 2015; 386:1472-83]